107 resultados para day length
Resumo:
Effect of temperature and irradiance on growth and reproduction of Enteromorpha prolifera that bloomed offshore along the Qingdao coast in summer 2008, was studied. It was showed that E. prolifera propagated mainly asexually with specific growth rate (SGR) of 10.47 at 25A degrees C/40 mu mol m(-2)s(-1). Under this condition, gametes with two flagellate formed and released in 5 days. At the beginning of the development, the unicell gamete divided into two cells with heteropolarity, and then the apical cell developed into thalli primordial cells, whereas the basal cell developed into rhizoid primordial cells. In 8-day culture, the monoplast gamete developed into juvenile germling of 240 mu m in length. Unreleased gametes can develop directly within the alga body. E. prolifera could either reproduce through lateral branching or fragmenting except apomixis revealed by Microscopic observation. On aged tissue of E. prolifera, although the degraded pigments partially remained in faded algal filaments, numerous vegetative cells could still divide actively in the algal tissues.
Resumo:
Transglutaminase can catalyze the cross-linking reaction between soluble clotting protein molecules from the plasma for prevention of excess blood loss from a wound and obstructing micro-organisms from invading the wound in crustaceans. A novel transglutaminase (FcTG) gene was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 2972 bp, encoding 757 amino acids with a calculated molecular mass of 84.96 kDa and a theoretical isoelectric point of 5.61. FcTG contains a typical transglutaminase-like homologue (TGc domain: E-value = 1.94e-38). Three catalytic sites (Cys-324, His-391 and Asp-414) are present in this domain. The deduced amino acid sequence of FcTG showed high identity with black tiger shrimp TG, kuruma shrimp TG and crayfish TG. Transcripts of FcTG mRNA were mainly detected in gill, lymphoid organ and hemocytes by RT-PCR. RNA in situ hybridization further confirmed that FcTG was constitutively expressed in hemocytes both in the circulatory system and lymphoid organ. The variation of mRNA transcription level in hemocytes and lymphoid organ following injection of killed bacteria or infection with white spot syndrome virus (WSSV) was quantified by RT-PCR. The up-regulated expression of FcTG in shrimp lymphoid organ following injection of bacteria indicates that it is inducible and might be associated with bacterial challenge. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
To determine the optimal larval density for hatchery culture of the clam Meretrix meretrix, experiments with stocking densities of 5, 10, 20, 40 and 60 larvae ml(-1) were designed, which included the developmental stages from D-veliger to 8 days postsettlement. Shell length, settlement time and survival rate of the larvae were recorded. Results showed that, at each sampling time, larvae reared at the highest density had the smallest mean size, whereas larvae reared at the lowest density had the largest mean size. Statistical differences in mean shell length at different stocking densities appeared from day 2, and greater differences occurred with increased culture time. Specific growth rate (SGR) in the rapid growing stage (day 0-3) was negatively correlated with density; however, no correlation was found between SGR and density in the slow growing stage (days 3-7). Settlement time was prolonged and shell length of settled larvae decreased as density increased. However, larval survival rate (74.8-79.1%) was independent of stocking density. Results showed that a high stocking density, in the designated range, is feasible for larval culture of the clam M. meretrix. However, for large-scale culture, in the interest of costs and safety, a stocking density of 10-20 larvae ml(-1) is recommended. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Field-collected tetrasporophytes of Palmaria palmata were tumbled in 300-L outdoor tanks from January to August at ambient daylength or in a constant short-day (SD) regime (8 h light per day), both at 10 or 15 degrees C. Tetrasporangia were massively induced after 2.5 months under SD conditions at 10 degrees C and completely lacking at 15 degrees C, both under SD or ambient daylength conditions, with a few tetrasporangia present at 10 degrees C and ambient daylength. Elongation rates of tagged tetrasporophytic thalli peaked from March to April in all four conditions, when the biomass densities in the outdoor tanks were close to 2.5 kg fresh weight m(-2). Under all four conditions, juvenile proliferations started to appear in June from the margins of the old fronds, and attained approximately 1 cm in length by the end of July. Approximately 80% of the tetraspores were released during the first three dark phases in a light/dark regime, and the remaining 20% during the light phases. A minimum of 10 min darkness was observed to trigger spore release. White light inhibited tetraspore release, while a similar number of spores were released in continuous red light or in the light/dark regime, although with no significant differences of spore release during subjective days and nights. Sporelings were successfully derived from the released tetraspores for mass propagation of the male gametophyte in 2000-L outdoor tanks in a greenhouse. Mass production of male gametophytic sporelings of P. palmata was completed two times by SD induction of tetrasporangia at 10 degrees C, release of spores in darkness and culturing the sporelings until they were ready to be propagated vegetatively in greenhouse tanks. One experiment lasted from January to October 2001, with spore release in June, and the second from September to April 2003, with spore release in January. These results may support the development of sustainable, year-round Palmaria farming. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F-2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with "broad and thin blade" characteristics and another with "long and narrow blade" characteristics, were applied in the hybridization to yield the F-2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for "FL," explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait "FW," accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.
Resumo:
With a "two-way pseudo-testcross" mapping strategy, we applied the amplified fragment length polymorphism (AFLP) markers to construct two moderate density genetic linkage maps for Laminaria. The linkage maps were generated from the 60 progenies of the F, cross family (Laminaria longissima Aresch. x L. japonica Miyabe) with twenty pairs of primer combinations. Of the 333 polymorphic loci scored in 60 progenies, 173 segregated in a 1:1 ratio, corresponding to DNA polymorphisms heterozygous in a single parent, and the other 58 loci existing in both parents followed a 3:1 Mendelian segregation ratio. Among the loci with 1:1 segregating ratios, 79 loci were ordered in 14 linkage groups (648.6 cM) of the paternal map, and 72 loci were ordered in 14 linkage groups (601.9 cM) of the maternal map. The average density of loci was approximately 1 per 8 cM. To investigate the homologies between two parental maps, we used 58 loci segregated 3:1 for further analysis, and deduced one homologous linkage group. The linkage data developed in these maps will be useful for detecting loci-controlling commercially important traits for Laminaria.
Resumo:
Apostichopus japonicus is a common sea cucumber that undergoes seasonal inactivity phases and ceases feeding during the summer months. We used this sea cucumber species as a model in which to examine phenotypic plasticity of the digestive tract in response to food deprivation. We measured the body mass, gross gut morphology and digestive enzyme activities of A. japonicus before, during, and after the period of inactivity to examine the effects of food deprivation on the gut structure and function of this animal. Individuals were sampled semi-monthly from June to November (10 sampling intervals over 178 days) across temperature changes of more than 18 degrees C. On 5 September, which represented the peak of inactivity and lack of feeding, A. japonicus decreased its body mass, gut mass and gut length by 50%, 85%, and 70%, respectively, in comparison to values for these parameters preceding the inactive period. The activities of amylase, cellulase and lipase decreased by 77%, 98%, and 35% respectively, in comparison to mean values for these enzymes in June, whereas pepsin activity increased two-fold (luring the inactive phase. Alginase and trypsin activities were variable and did not change significantly across the 178-day experiment. With the exception of amylase and cellulase, all body size indices and digestive enzyme activities recovered and even surpassed the mean values preceding the inactive phase during the latter part of the experiment (October-November). Principal Component Analysis (PCA) utilizing the digestive enzyme activity and body size index data divided the physiological state of this cucumber into four phases: an active stage, prophase of inactivity peak inactivity, and a reversion phase. These phases are all consistent with previously suggested life stages for this species, but our data provide more defined characteristics of each phase. A. japonicus clearly exhibits phenotypic plasticity (or life-cycle staging) of the digestive tract during its annual inactive period. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The effects of the timing of first feeding (0, 1 and 2 days after yolk exhaustion) and starvation on the point-of-no-return (PNR), survival and growth of laboratory-reared rock bream larvae were studied under controlled conditions. Larvae began to feed exogenously at 3 days after hatching (dah) and reached PNR on 54 h after yolk exhaustion at 22 +/- 1.5 degrees C. Larvae growth was significantly affected by the time of first exogenous feeding. The growth of 0 day delayed first feeding larvae was obviously faster than those of the other delayed first feeding larvae (P<0.05) whether at 7 dab (SL=3.40 mm, SGR=5.7, CV=4.0) or at 15 dah (SL=4.85 mm, SGR=6.1, CV=8.2) with a more uniform size distribution. Survival of 0 day delayed first feeding larvae and I day delayed first feeding larvae was 13% and 8% at the end of experiment, respectively, while no larvae survived up to 7 dah for 2 days delayed first feeding larvae and unfed larvae. Food resulted in a progressive deterioration of the larval digestive system and atrophy of skeletal muscle fibre. The ratios of head length to SL (standard length), body height to SL and eye diameter to SL were the most sensitive morphometric indices to detect the effects of fasting on larval condition. Present results showed that the combination of morphological and morphometric variables could be used to evaluate the nutritional condition of rock bream larvae. In order to avoid the potential mortality and gain better development, survival and growth in industrial production, the rock bream larvae must establish successful first feeding within 2 days after yolk exhaustion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In laboratory conditions, effects of rearing temperature and stocking density were examined on hatching of fertilized egg and growth of auricularia larvae of Apostichopus japonicus respectively. Data series like larval length and density, metamorphic time, and survival rate of the larvae were recorded. Statistics showed that for A. japonicus, survival rate (from fertilized egg to late auricularia) decreased significantly with the increasing rearing temperature (P < 0.05). At different temperatures SGR was statistically significant as well (P < 0.05) from day 1, and maximal SGR was found on day 9 at 24A degrees C (159.26 +/- 3.28). This study clearly indicated that at low temperature (< 24A degrees C), metamorphic rate was remarkably higher than at higher temperature (> 26A degrees C). Hatching rate was significantly different between 0.2-5 ind./ml groups and 20-50 ind./ml groups. Rearing larvae at the higher density had the smaller maximal-length, whereas needed longer time to complete metamorphosis. This study suggested that 21A degrees C and 0.4 ind./ml can be used as the most suitable rearing temperature and stocking density for large -scale artificial breeding of A. japonicus's larvae.
Resumo:
During winter months, a novel overwintering mode of transferring juvenile abalones to open seawaters in southern China rather than keeping them in closed land-based nursery systems in northern China is a popular practice. The initial size, stocking density and sorting are among the first considerations when establishing an abalone culture system. This study aimed to investigate the effects of these factors on the growth of juvenile Pacific abalone, Haliotis discus hannai Ino, during overwintering. Juvenile abalones were reared in multi-tier basket form for overwintering in open seawaters in southern China for 106 days. The daily growth rates (DGRs) in the shell length of all experimental groups ranged from 67.08 to 135.75 mu m day(-1), while the specific growth rates (SGRs) were 0.2447-0.3259% day(-1). Variance analysis indicated that both DGRs and SGRs in shell length were significantly affected by the initial body size and stocking density. Furthermore, the effects of stocking density on DGRs and SGRs varied with the initial size. However, sorting abalones according to their initial sizes may not be necessary in practice as sorting did not alter growth significantly at all densities in this study. Factors potentially affecting abalone growth such as genetic control and intraspecific competition were discussed.
Resumo:
A base population of the bay scallop, Argopecten irradians irradians Lamarck, was produced by crossing two cultured bay scallop populations. After 1 year of rearing, the top 10% truncation selection of the top 10% (i=1.755) was carried out in the base population of about 1300 adults. A control parental group with a an identical number to the select parental group was randomly selected from the entire population before isolation of the select parental group. The result showed that, at the larval stage, the growth rate of larvae in the selected line was significantly higher than that of the control (P < 0.05), and that the genetic gain was 6.78%. Owing to the lower density of control at the spat stage, the mean shell length of the control line was larger than that of the select line at day 100. When the same density was adjusted between two lines in the grow-out stage (from day 100 to 160), the daily growth rate of the selected line was significantly higher than that of the control line (P < 0.05). Survival of the select line was significantly larger than that of the control line in the grow-out stage. In conclusion, the results obtained from this experiment indicate that selective breeding from a base population with a high genetic diversity established by mass spawning between different populations appears to be a promising method of genetic improvement in bay scallop, A. irradians irradians Lamarck.
Resumo:
The impact of starvation on larvae of Ivory shell Babylonia formosae habei was studied in a laboratory experiment. Newly hatched veligers showed considerable tolerance to starvation due to their endogenous yolk material, and time to the point-of-no-return (PNR; the threshold point during starvation after which larvae can longer metamorphose even if food is provided) was calculated to be 104.5 h. However, starvation still affected larval growth, survival, and metamorphosis. Mean shell length of larvae increased 49.77 mum day(-1) for nonstarved, but only 11.13 mum day (-1) for larvae starved for 108 h. After larvae began feeding, their growth rates rapidly recovered to the level of the nonstarved following short periods of starvation (less than 48 h), but were inhibited and unable to ever reach the level of the nonstarved when being starved beyond 48 h. Percent metamorphosis was 53.75% for the nonstarved, but all larvae died before 10 days for those starved for 108 h. Starvation not only affected larval time to reach metamorphosis, but also caused the delay in the time to metamorphosis. For the nonstarved, larvae took only 11.5 days to reach spontaneous metamorphosis, but they took 20 days to reach spontaneous metamorphosis when starved for 96 h, and this duration of delayed metamorphosis reached 8.5 days. Furthermore, the importance of yolk material for maintaining larval survival of B. formosae habei during starvation periods is also discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Amplified fragment length polymorphisms (AFLP) were used to study the inheritance of shell color in Argopecten irradians. Two scallops, one with orange and the other with white shells, were used as parents to produce four F-1 families by selfing and outcrossing. Eighty-eight progeny, 37 orange and 51 white, were randomly selected from one of the families for segregation and mapping analysis with AFLP and microsatellite markers. Twenty-five AFLP primer pairs were screened, yielding 1138 fragments, among which 148 (13.0%) were polymorphic in two parents and segregated in progeny. Six AFLP markers showed significant (P < 0.05) association with shell color. All six loci were mapped to one linkage group. One of the markers, F1f335, is completely linked to the gene for orange shell, which we designated as Orange1, without any recombination in the progeny we sampled. The marker was amplified in the orange parent and all orange progeny, but absent in the white parent and all the white progeny. The close linkage between F1f335 and Orange1 was validated using bulk segregation analysis in two natural populations, and all our data indicate that F1f335 is specific for the shell color gene, Orange1. The genomic mapping of a shell color gene in bay scallop improves our understanding of shell color inheritance and may contribute to the breeding of molluscs with desired shell colors.
Resumo:
A complete diallel cross between two bay scallop populations, Argopecten irradians concentricus Say (M) and A. irradians irradians Lamarck (C), was carried out. Growth and survival were compared among hybrids and pure populations. No significant difference in the shell length was found among the four groups on the first day of D-larvae. On day 10, shell lengths of the two reciprocal crosses (CM, MC)(female x male ) were significantly greater than those of the CC (141.97 mu m) and MM (146.20 mu m) groups, with the growth rate of the MC (156.14 mu m) cross greater than that of the CM (155.35 mu m) cross. Also, heterosis for survival was significantly larger than that for growth. Both maternal origin and mating strategy had significant effects on growth and survival throughout the whole larval stage. Heterosis was also observed in later spat and adult stages. On day 170, the mean shell length, shell height and total weight of the CM cross were significantly larger than those of the other crosses (P<0.05). The results from this study indicate that hybridization between A. irradians concentricus and A. irradians irradians may be a promising way for genetic improvement of existing bay scallop brood stocks in China. (c) 2007 Elsevier B.V. All rights reserved.
A new three-phase culture method for Manila clam, Ruditapes philippinarum, farming in northern China
Resumo:
Studies on reproduction, hatchery management, and culture of Manila clams Ruditapes philippinarum were carried out in an attempt to optimize their culture conditions and techniques. Results from these studies led to the development of a three-phase culture method for Manila clam farming in northern China. The key components of the new method were: 1) early spawning and over-wintering indoors (greenhouse); 2) optimized larval culture conditions and techniques; 3) juvenile rearing in shallow, fertilized nursery ponds; 4) optimized stocking size and density and substrate for mudflat grow out. Broodstock were maturated indoors for a month from early April to early May. Primarily because of higher water temperatures in the greenhouse the clams spawned more than one month earlier than in the natural environment. From May to July, juveniles were reared for 1-2 months indoors to a size of 2.0-3.0 mm in shell length before being moved to outdoor, pre-disinfected, nursery ponds. Juveniles were then reared in the nursery ponds for one month to about 1.0 cm before being transferred to the mudflat for grow out. Juvenile clams in nursery ponds grew considerably faster than in the natural environment probably because of higher temperatures and more abundant natural food. During grow out, the clams were reared for 4-7 months until they reached a market size (3.0-3.3 cm). Juveniles produced after August were over-wintered in the greenhouse in which the water temperature was about 3 degrees C higher than that of the outdoor environment. Juveniles grew at an average rate of > 20 mu m day(-1), while in the natural environment no growth was observed during winter because of low temperatures. Juveniles in the greenhouse grew to 2-3 mm by the following March before being moved into outdoor nursery ponds. The three-phase culture method not only shortened the production period from spawn to market size from 24-36 months to about 10-14 months, but also prolonged the spawning season from 2 to 7 months, resulting in increased production of seed and market-size clams. Compared with the traditional method, the new method could increase the yield of market-size clams by 10-11 times, and increase the profit per ha mudflat by as much as 124 times and the profit per kg market-size clams produced by 13 times. (c) 2006 Elsevier B.V. All rights reserved.