100 resultados para ceramic matrix composites


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The shear fracture morphology of SCF/PEK-C composite with carbon fibers treated for different times was studied carefully by SEM. The result shows that the adhesion between fiber and matrix was improved and fractured model also changed from interface fracture to brittle fracture with increasing treatment time of carbon fiber. The fracture mechanism was discussed preliminary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The positive temperature coefficient (PTC) and negative temperature coefficient (NTC) effect of carbon black (CB) filled low density polyethylene (LDPE) composites was studied using electrical resistivity spectra, DSC, tensile mechanical analysis (TMA) and small-angle X-ray scattering (SAXS) techniques. The three LDPEs used have a similar crystallinity and different melting index (MI). The experimental results indicate that the CB has no significant effect on the crystallinity and the long spacing of crystalline domains of LDPE. Based upon the TMA and dynamic elastic modulus spectra, it can be concluded that the PTC effect is related to the thermal expansion of the polymer matrix, and the NTC effect is caused by a decrease of the elastic modulus of the polymer at high temperatures. The NTC effect can be reduced by enhancing either the elastic modulus or the interaction between carbon black and matrix. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexural fatigue tests were conducted on injection-molded short fiber composites, carbon fiber/poly(phenylene ether ketone) (PEK-C) and glass fiber/PEK-C (with addition of polyphenylene sulfide for improving adhesion between matrix and fibers), using four-point bending at stress ratio of 0.1. The fatigue behavior of these materials was presented. By comparing the S-N curves and analyzing the fracture surfaces of the two materials, the similarity and difference of the failure mechanisms in the two materials were discussed. It is shown that the flexural fatigue failure of the studied materials is governed by their respective tensile properties. The matrix yielding is main failure mechanism at high stress, while at lower stress the fatigue properties appear fiber and interface dominated. (C) 1997 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanical properties of glass fiber-reinforced phenolphthalein poly(ether ketone)/poly(phenylene sulfide) (PEK-C/PPS) composites have been studied. The morphologies of fracture surfaces were observed by scanning electron microscope. Blending a semicrystalline component, PPS, can improve markedly the mechanical properties of glass fiber-reinforced PEK-C composites. These results can be attributed to the improvement of fiber/matrix interfacial adhesion and higher fiber aspect ratio. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective elastic properties of piezoelectric composites containing an infinitely long, radially polarized cylinder embedded in an isotropic non-piezoelectric matrix are theoretically investigated under an external strain field. Analytical solutions of elastic displacement and electric potentials are exactly derived, and the effective elastic responses are formulated in the dilute limit. Meanwhile, a vanishing piezoelectric response mechanism is revealed in the piezoelectric composite containing radially polarized cylinders. Furthermore, it is shown that the effective elastic properties can be enhanced (or reduced) due to the increase of the piezoelectric (or dielectric) constants of the cylinders. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective thermal conductivity of graded composites with contact resistance on the inclusion surface is investigated. As an example, we have considered the graded composite media with a spherical particle embedded in a homogeneous matrix, where the thermal conductivity of spherical inclusion is an exponential function k(i) = c exp(betar) (where r is the inside distance of a point in particle from the center of the spherical particle in a spherical coordinate). For both heat contact resistance and perfect contact cases, we have given a reasonable effective medium approximation to calculate the effective conductivity. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effective property has been investigated theoretically in graded elliptical cylindrical composite's consisting of inhomogeneous graded elliptical cylinders and an isotropic matrix under external uniform electric field. As a theoretical model, the dielectric gradient profile in the elliptical cylinder is modeled by a power-law function of short semi-axis variable parameter (xi(2) - 1) in the elliptical cylindrical coordinates, namely epsilon(i)(xi) = c(k) (xi(2) - 1)(k), where c(k) and k are the parameters, and xi is the long semi-axis space variable in an elliptical cylindrical inclusion region. In the dilute limit, the local analytical potentials in inclusion and matrix regions are derived exactly by means of the hyper-geometric function, and the formulas are given for estimating the effective dielectric responses under the external lfield along (x) over cap- and (y) over cap -directions, respectively. Furthermore, we have demonstrated that our effective response formulas can be reduced to the well-known results of homogeneous isotropic elliptical cylindrical composites if we take the limit k -> 0 in graded elliptical cylindrical composites. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perturbation expansion method is used to find the effective thermal conductivity of graded nonlinear composites having thermal contact resistance on the inclusion surface. As an example, we have studied the graded composites with cylindrical inclusions immersed in a homogeneous matrix. The thermal conductivity of the cylindrical inclusion is assumed to have a power-law profile of the radial distance r measured from its origin. For weakly nonlinear constitutive relations between the heat flow density q and the temperature field T, namely, q = -mu del T - chi vertical bar del T vertical bar(2) del T, in both the inclusion and the matrix regions, we have derived the temperature distributions using the perturbation expansion method. A nonlinear effective medium approximation of graded composites is proposed to estimate the effective linear and nonlinear thermal conductivities. by considering the temperature singularity on the inclusion surface due to the heat contact resistance. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piezoelectric composites consisting of spherically anisotropic piezoelectric inclusions (i.e., piezoceramic material) in an infinite nonpiezoelectric matrix under a uniform electric field are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials are derived exactly. Taking account of the coupling effects of elasticity, permittivity, and piezoelectricity, formulas are derived for the effective dielectric and piezoelectric responses in the dilute limit. A piezoelectric response mechanism is revealed, in which the effective piezoelectric response vanishes irrespective of how much spherically anisotropic piezoelectric inclusions are inside. Moreover, the effective coupled responses of the piezoelectric composites show that the effective dielectric responses decrease (increase) as the inclusion elastic (piezoelectric) constants increase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A graded piezoelectric composite consisting of a spherically anisotropic graded piezoelectric inclusion imbedded in an infinite nonpiezoelectric matrix, with the physical properties of the graded spherical inclusion having a power-law profile with respect to the radial variable r, is studied theoretically. Under an external uniform electric field, the electric displacement field and the elastic stress tensor field of this spherically anisotropic graded piezoelectric composite are derived exactly by means of displacement separation technique, based on the governing equations in the dilute limit. A piezoelectric response mechanism, in which the effective piezoelectric response vanishes along the z direction (or x,y directions), is revealed in this kind of graded piezoelectric composites. Furthermore, it is found that the effective dielectric constant decreases (or increases) with the volume fraction p of the inclusions if the exponent parameter k of the grading profile is larger (or smaller) than a critical value. (C) 2007 American Institute of Physics.