119 resultados para asymmetry equation of state of nuclear matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extended quark distribution functions are presented obtained by fitting a large amount of experimental data of the l-A DIS process on the basis of an improved nuclear density model. The experimental data of l-A DIS processes with A >= 3 in the region 0.0010 <= x <= 0.9500 axe quite satisfactorily described by using the extended formulae. Our knowledge of the influence of nuclear matter on the quark distributions is deepened.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within the framework of microscopic Brueckner-Hatree-Fock, the contribution of the three-body force (TBF) rearrangement to the. single nucleon potential is calculated. The TBF rearrangement effects on the momentum and the density dependence of the single nucleon potential are investigated. The influence of the TBF rearrangement on the effective mass of nucleon is also discussed. It is shown that the rearrangement contribution of TBF is repulsive and momentum-dependent. The TBF rearrangement effect and its momentum dependence increase rapidly as increasing density and momentum. At high densities and high momenta, the repulsive rearrangement contribution reduces strongly the attraction of the single nucleon potential and enhances considerably the momentum dependence of the single nucleon potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

核辐照应用于中药领域的研究得到人们广泛关注。综述了核辐照在中草药的栽培、育种和消毒等方面的应用,指出辐照诱变技术与生物技术相结合将为提高细胞突变率和加快中草药遗传改良开辟广阔前景。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proton-neutron interaction in determining the evolution of nuclear structure has been studied by using the Brillouin-Wigner perturbation expansion. The particle-hole and particle-particle p-n interactions are unifiedly described in the theory. The obtained formulas of level energies and excitation energies scaled in the small- and large-NpNn limits can well explain the linearity of the extracted proton-neutron interaction energies and the attenuation of the 2(1)(+) excitation energies against the valence nucleon product NpNn for five mass regions from A = 100-200.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microscopic three-nucleon force consistent with the Bonn B two-nucleon potential is constructed, which includes Delta(1232), Roper, and nucleon-antinucleon excitation contributions. Recent results for the choice of the meson parameters are discussed. The forces are used in Brueckner calculations and the saturation properties of nuclear matter are determined. At the high densities,the nuclear equation of state and the symmetry energy are calculated. The corresponding neutron star mass-radius relations are presented.