105 resultados para ammassi galassie aloni relitti radio cluster
Resumo:
The multi-photon ionization process of the hydrogen-bond cluster of pyridine-methanol has been investigated using a conventional and reflectron time-of-flight mass spectrometer (RTOF-MS) at 355 and 266 nm laser wavelengths, respectively. The sequences of the protonated cluster ions (CH3OH)(n)H+ and (C5H5Nn)(CH3OH)(m)H+ (n = 1,2) were observed at both laser wavelengths, while the sequence of the cluster ions (CH3)OHn (H2O)H+ was observed only at 355 nm laser wavelength. The difference between the relative signal intensities of the protonated methanol cluster ions at different laser wavelengths is attributed to different photoionization mechanisms. Some nascent cluster ions in metastable states dissociated during free flight to the detector. The dissociation kinetics is also discussed. (C) 2000 Elsevier Science B.V.
The ion-molecule reaction after multiphoton ionization in the binary cluster of ammonia and methanol
Resumo:
The binary cluster (CH3OH)(n)(NH3)(m) was studied by using a multiphoton ionization time-of-flight mass spectrometer (MPI-TOFMS). The measured two series of protonated cluster ions: (CH3OH)(n)H+ and (CH3OH)(n)NH4+ (1 less than or equal to n less than or equal to 14) were attributed to the ion-molecule reaction in the binary cluster ions. The mixed cluster of CH3OD with ammonia was also studied. The results implied that the proton transfer probability from the OD group was larger than that from CH3 group. The ab initio calculation of the binary cluster was carried out at the HF/STO-3G and MP2/6-31G** levels of theory, and indicated that the latter process of the proton transfer must overcome a barrier of similar to 29 kcal/mol. (C) 1999 Elsevier Science B.V. All rights reserved.
氢甲酰化反应的有效双金属催化剂:Rh-Co簇合物 AN EFFECTIVE ORGANO-BIMETALLIC Rh-Co CLUSTER CATALYST FOR HYDROFORMYLATI-ON
Resumo:
The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 x 10(10)-2 x 10(11) W/cm(2). Multiply charged ions Of Iq+ (q = 2-3) and C2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH3I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Multicharged xenon and krypton ions with charge states up to Xe11+ and Kr11+ have been observed in laser ionization of a pulsed xenon or krypton beam by a 25 ns Nd-YAG laser with laser intensity of 10(10)-10(11) W cm(-2) at 532 nm. There is strong evidence to support that those multicharged ions come from cluster-assisted electron recolliding ionizations inside the cluster after multiphoton ionization of atoms in the cluster, the electron can gain its kinetic energy by inverse bremsstrahlung absorption from a laser field quickly.