146 resultados para alpine meadow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floral closure may be induced by pollination and various other factors, but is rarely studied comprehensively. Different kinds of floral closure should have various effects on reproductive fitness of plants. Two contrasting types of floral closure were observed in the flowers of Gentiana straminea Maxim. in the eastern Qinghai-Tibetan Plateau. The first type occurred prior to pollination during both gender phases, in response mainly to decreasing air temperatures. Flowers closed when decreasing temperatures approached 20 degrees C and subsequently began to reopen the following day during mid-morning when air temperatures warmed to approximately 13-15 degrees C. This kind of floral closure can protect pollen grains on either stamens or stigmas, increasing fitness of both male and female. Following pollination, permanent floral closure occurred, although there was a delay between the dates of pollination and permanent closure, during which flowers continued to show temporary closure in response to low temperature episodes. The time required for permanent, pollination-induced closure varied according to the age of the gender phase, including a prolonged time before closure if pollination occurred early in the female phase. The retaining of permanent closed flowers increased both approaching (to inflorescences) and visiting (to unpollinated flowers) frequencies of individual plants when with fewer open flowers and the persisting corolla is further beneficial for seed sets of these pollinated flowers. Thus, two separate types of floral closure, one in response to environmental cues and the other in response to the age of each gender stage, appeared to have a strong influence on reproductive fitness in this species. These results revealed a different adaptive strategy of alpine plants in the sexual reproduction assurance in addition to the well-known elevated floral longevity, dominant role of more effective pollinators and increased reproduction allocation in the arid habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To assess the impact of livestock grazing on the emission of greenhouse gases from grazed wetlands, we examined biomass growth of plants, CO2 and CH4 fluxes under grazing and non-grazing conditions on the Qinghai-Tibetan Plateau wetland. After the grazing treatment for a period of about 3 months, net ecosystem CO2 uptake and aboveground biomass were significantly smaller, but ecosystem CH4 emissions were remarkably greater, under grazing conditions than under non-grazing conditions. Examination of the gas-transport system showed that the increased CH4 emissions resulted from mainly the increase of conductance in the gas-transport system of the grazed plants. The sum of global warming potential, which was estimated from the measured CO2 and CH4 fluxes, was 5.6- to 11.3-fold higher under grazing conditions than under non-grazing conditions. The results suggest that livestock grazing may increase the global warming potential of the alpine wetlands. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the alpine region of the Tibetan Plateau, five perennial grass cultivars, Bromus inermis (B), Elymus nutans (E), Clinelymus nutans (C), Agropyron cristatum (A), and Poa crymophila (P) were combined into nine communities with different compositions and ratios, B+C, E+A, B+E+A, E+B+C,C+E+A,B+E+C+A,B+C+A+P,B+E+A+P and E+C+A+P. Each combination was sown in six 10 X 10 m plots with three hand-weeded plots and three natural-growing plots in a completely randomised design in 1998. A field experiment studied the performance of these perennial grass combinations under the competitive interference of annual weeds in 3 consecutive years from 1998 to 2000. The results showed that annual weeds occupied more space and suppressed the growth of the grasses due to earlier germination and quicker growth in the establishment year, but this pattern changed in the second and third years. Leaf area indexes (LAIs) of grasses were greatly decreased by the competitive interference of weeds, and the negative effect of weeds on LAIs of grasses declined and stabilised in the second and third years. E+B+C, B+E+C+A, and B+E+A+P possessed relatively higher LAIs (P < 0.05) among all grass combinations and their LAIs were close to five when the competitive interference of weeds was removed. Grasses were competitively inferior to weeds in the establishment year, although their competitive ability (aggressivities) increased throughout the growing season. In the second and third years, grasses were competitively superior to weeds, and their competitive ability decreased from May until August and increased in September. Dry matter (DM) yields of grasses were reduced by 29.8-74.1% in the establishment year, 11.0-64.9% in the second year, and 16.0-55.8% in the third year by the competitive interference of weeds. B+E+C+A and B+E+A+P can produce around 14 t/ha of DM yields, significantly higher (P < 0.05) than the production of the other grass combinations in the second and third years after the competitive interference of weeds was removed. It was preliminarily concluded that removal of competitive interference of weeds increased the LAIs of all grass swards and improved the light interception of grasses, thus promoting the production of perennial grass pastures. The germination stage of the grasses in the establishment year was the critical period for weeding and suppression of weeds should occur at an early stage of plant growth. The grass combinations of B+E+C+A and B+E+A+P were productive and can be extensively established in the alpine regions of the Tibetan Plateau. Two or three growing seasons will be needed before determining success of establishment of grass mixtures under the alpine conditions of the Tibetan Plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was conducted on grass mixtures that included smooth bromegrass (SB) + drooping wild ryegrass (DW), smooth bromegrass + Siberian wild ryegrass (SW) + crested wheatgrass (CW) and smooth bromegrass + Siberian wild ryegrass + drooping wild ryegrass + crested wheatgrass in the alpine region of Qinghai-Tibetan Plateau. The study was conducted from 1998 to 2000 to investigate the effects of N application rates and growing year on herbage dry matter (DM) yield and nutritive values. Herbage DM production increased linearly with N application rates. The effect of N application on DM yields was greater (P < 0.05) in the 2nd and 3rd production years than in the establishment year. Dry matter yields of SB + SW + CW and SB + SW + DW + CW can reach as high as 15 000 kg ha(-1) at 345 kg ha(-1) N rate in the 3rd growing year. With increased N application rates, crude protein (CP) contents and 48 h in sacco DM degradability of grasses increased (P < 0.05). No effect (P > 0.05) of N application was detected on organic matter (OM) and acid detergent fibre (ADF) concentration. It can be concluded that for increased biomass production in the alpine region of the Qinghai-Tibetan Plateau, a minimum of 345 kg N ha(-1) should be applied to grass stands in three split application of 115 kg N ha(-1), in early June, early July and late July

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the alpine region of the Qinghai-Tibetan Plateau four indigenous perennial grass species Bromus inermis (BI), Elymus sibiricus (ES), Elymus nutans (EN) and Agropyron cristatum (AC) were cultivated as three mixtures with different compositions and seeding rates, BI + EN, BI + ES + AC and BI + ES + EN + AC. From 1998 to 2001 there were three different weeding treatments: never weeded (CK); weeded on three occasions in the first year (1-y) and weeded on three occasions in both the first and second year (2-y) and their effect of grass combination and interactions on sward productivity and persistence was measured. Intense competitive interference by weedy annuals reduced dry matter (DM) yield of the swards. Grass combination significantly affected sward DM yields, leaf area index (LAI) and foliar canopy cover and also species composition DM and LAI, and species plant cover. Interaction between weeding treatments and grass combination was significant for sward DM yield, LAI and canopy cover, but not on species composition for DM, LAI or species plant cover. Grass mixture BI + ES + EN + AC gave the highest sward DM yield and LAI for both weeding and non-weeding treatments. Species ES and EN were competitively superior to the others. Annual weedy forbs must be controlled to obtain productive and stable mixtures of perennial grasses, and germination/emergence is the most important time for removal. Weeding three times (late May, late June and mid-July) in the establishment year is enough to maintain the production and persistence of perennial grass mixtures in the following growing seasons. Extra weeding three times in the second growing year makes only a slight improvement in productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extremely high level of solar radiation on the Qinghai-Tibet Plateau may induce photoinhibition and thus limit leaf carbon gain. To assess the effect of high light, we examined gas exchange and chlorophyll fluorescence for two species differing in light interception: the prostrate Saussurea superba and the erect-leaved Gentiana straminea. In controlled conditions with favorable water and temperature, neither species showed apparent photoinhibition in gas exchange measurements. In natural environment, however, their photosynthetic rate decreased remarkably at high light. Photosynthesis depression was aggravated under high leaf temperature or soil water stress. Relative stomatal limitation was much higher in S. superba than in G. straminea and it remarkably increased in the later species at midday when soil was dry. F-v/F-m as an indicator for photoinhibition was generally higher in S. superba than in the other species. F-v/F-m decreased significantly under high light at midday in both species, even when soil moisture was high. F-0 linearly elevated with the increment of leaf temperature in G. straminea, but remained almost constant in S. superba. Electron transport rate (ETR) increased with photosynthetically active photon flux density (PPFD) in S. superba, but declined when PPFD was high than about 1000 mumol m(-2) s(-1) in G. straminea. Compared to favorable environment, the estimated daily leaf carbon gain at PPFD above 800 mumol m(-2) s(-1) was reduced by 32% in S. superba and by 17% in G. straminea when soil was moist, and by 43% and 53%, respectively, when soil was dry. Our results suggest that the high radiation induces photoinhibition and significantly limits photosynthetic carbon gain, and the limitation may further increase at higher temperature and in dry soil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of grazing intensity on leaf photosynthetic rate (Pn), specific leaf area (SLA), individual tiller density, sward leaf area index (LAI), harvested herbage DM, and species composition in grass mixtures (Clinelymus nutans + Bromus inermis, Elymus nutans + Bromus inermis + Agropyron cristatum and Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum) were studied in the alpine region of the Tibetan Plateau. Four grazing intensities (GI), expressed as feed utilisation rates (UR) by Tibetan lambs were imposed as follows: (1) no grazing; (2) 30% UR as light grazing; (3) 50% UR as medium grazing; and (4) 70% UR as high grazing. Leaf Pn rate and tiller density of grasses increased (P < 0.05), while sward LAI and harvested herbage DM declined (P < 0.05) with the increments of GI, although no effect of GI on SLA was observed. With increasing GI, Elymus nutans and Clinelymus nutans increased but Bromus inermis and Agropyron cristatum decreased in swards, LAI and DM contribution. Whether being grazed or not, Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum was the most productive sward among the grass mixtures. Thus, two well-performed grass species (Elymus nutans and Clinelymus nutans) and the most productive mixture of four species should be investigated further as the new feed resources in the alpine grazing system of the Tibetan Plateau. Light grazing intensity of 30% UR was recommended for these grass mixtures when swards, LAI, herbage DM harvested, and species compatibility were taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Qinghai-Tibet Plateau is characterized by extremely high radiation, which may induce down-regulation of photosynthesis in plants living in this alpine ecosystem. To clarify whether photoinhibition occurs in the alpine environment and to discern its underlying mechanisms, we examined photosynthetic gas exchange and fluorescence emission in response to the changes in photosynthetic photon flux density (PPFD) and leaf temperature under natural regimes for two herbaceous species: prostrate Saussurea superba and erect-leaved Saussurea katochaete from altitude 3250 m on the Qinghai-Tibet Plateau. S. superba intercepted a higher maximum PPFD and experienced much higher leaf temperature than the erect-leaved S. katochaete. S. superba exhibited a much higher light saturation point for photosynthesis than S. katochaete. Under controlled conditions, the former species had higher CO2 uptake rates and neither species showed obvious photosynthetic down-regulation at high PPFD. Under natural environmental conditions, however, apparent photoinhibition, indicated by reduced electron transport rate (ETR), was evident at high PPFD for both species. After a night frost, the photochemistry of S. katochaete was depressed markedly in the early morning and recovered by mid-day. After a frost-free night, it was high in the morning and low at noon due to high radiation. S. superba did not respond to the night frost in terms of daytime photochemical pattern. In both species, photochemical depression was aggravated by high leaf temperature and the erect species was more sensitive to high temperature. This study suggests that the high radiation on the Qinghai-Tibet Plateau is likely to induce rapidly reversible photoinhibition, which is related closely to plant architecture. Photochemistry in the prostrate species seems able to tolerate higher PPFD, without obvious suppression, than the erect species. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The soil respiration and net ecosystem productivity of Kobresia littledalei meadow ecosystem was investigated at Dangxiong grassland station, one grassland field station of Lhasa Plateau Ecosystem Research Station. Soil respiration and soil heterotrophic respiration were measured at the same time by using Li6400-09 chamber in growing season of year 2004. The response of soil respiration and its components, i.e. microbial heterotrophic respiration and root respiration to biotic and abiotic factors were addressed. We studied the daily and seasonal variation on Net Ecosystem carbon Exchange (NEE) measured by eddy covariance equipments and then the regression models between the NEE and the soil temperature. Based on the researches, we analyzed the seasonal variation in grass biomass and estimated NEE combined the Net Ecosystem Productivity with heterogeneous respiration and then assessed the whether the area is carbon source or carbon sink. 1.Above-ground biomass was accumulated since the grass growth started from May; On early September the biomass reached maximum and then decreased. The aboveground net primary production (ANPP) was 150.88 g m~" in 2004. The under-ground biomass reached maximum when the aboveground start to die back. Over 80% of the grass root distributed at the soil depth from 0 to 20cm. The underground NPP was 1235.04 g m"2.. Therefore annual NPP wasl.385X103kg ha"1, i.e.6236.6 kg C ha"1. 2. The daily variation of soil respiration showed single peak curve with maximum mostly at noon and minimum 4:00-6:00 am. Daily variations were greater in June, July and August than those in September and October. Soil respiration had strong correlation with soil temperature at 5cm depth while had weaker correlation with soil moisture, air temperature, surface soil temperature, and so on. But since early September the soil respiration had a obviously correlation with soil moisture at 5cm depth. Biomass had a obviously linearity correlation with soil respiration at 30th June, 20th August, and the daytime of 27th September except at 23lh October and at nighttime of 27th September. We established the soil respiration responding to the soil temperature and to estimate the respiration variation during monsoon season (from June through August) and dry season (May, September and October). The regression between soil respiration and 5cm soil temperature were: monsoon season (June through August), Y=0.592expfl()932\ By estimating , the soil daily respiration in monsoon season is 7.798gCO2m"2 and total soil respiration is 717.44 gCC^m" , and the value of Cho is 2.54; dry season (May, September and October), Y=0.34exp°'085\ the soil daily respiration is 3.355gCO2m~2 and total soil respiration is 308.61 gCC^m", and the value of Cho is 2.34. So the total soil respiration in the grown season (From May to October) is 1026.1 g CO2IT1"2. 3. Soil heterogeneous respiration had a strong correlation with soil temperature especially with soil temperature at 5cm depth. The variation range in soil heterogeneous respiration was widely. The regression between soil heterogeneous respiration and 5cm soil temperature is: monsoon season, Y=0.106exp ' 3x; dry season, Y=0.18exp°"0833x.By estimating total soil heterotrophic respiration in monsoon season is 219.6 gCC^m"2, and the value of Cho is 3.78; While total soil heterogeneous respiration in dry season is 286.2 gCCbm"2, and the value of Cho is 2.3. The total soil heterotrophic respiration of the year is 1379.4kg C ha"1. 4. We estimated the root respiration through the balance between soil respiration and the soil heterotrophic respiration. The contribution of root respiration to total respiration was different during different period: re-greening period 48%; growing period 69%; die-back period 48%. 5. The Ecosystem respiration was relatively strong from May to October, and of which the proportion in total was 97.4%.The total respiration of Ecosystem was 369.6 g CO2 m" .we got the model of grass respiration respond to the soil temperature at 5cm depth and then estimated the daytime grass respiration, plus the nighttime NEE and daytime soil respiration. But when we estimated the grass respiration, we found the result was negative, so the estimating value in this way was not close. 6. The estimating of carbon pool or carbon sink. The NPP minus the soil heterogeneous respiration was the NEE, and it was 4857.3kg C o ha"1, which indicated that the area was the carbon sink.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface pollen assemblages and their relationhips with the modern vegetation and climate provide a foundation for investigating palaeo-environment conditions by fossil pollen analysis. A promising trend of palynology is to link pollen data more closely with ecology. In this study, I summarized the characteristics of surface pollen assemblages and their quantitative relation with the vegetation and climate of the typical ecological regions in northern China, based on surface pollen analysis of 205 sites and investigating of modern vegetation and climate. The primary conclusions are as follows:The differences in surface pollen assemblages for different vegetation regions are obvious. In the forest communities, the arboreal pollen percentages are more than 30%, herbs less than 50% and shrubs less than 10%; total pollen concentrations are more than 106 grains/g. In the steppe communities, arboreal pollen percentages are generally less than 5%; herb pollen percentages are more than 90%, and Artemisia and Chenopodiaceae are dominant in the pollen assemblages; total pollen concentrations range from 103 to 106 grains/g. In the desert communities, arboreal pollen percentages are less than 5%. Although Chenopodiaceae and Artemisia still dominate the pollen assemblages, Ephedra, Tamaricaceae and Nitraria are also significant important in the pollen assemblages; total pollen concentrations are mostly less than 104grains/g. In the sub-alpine or high and cold meadow communities, arboreal pollen percentages are less than 30%. and Cyperaceae is one of the most significant-taxa in the pollen assemblages. In the shrub communities, the pollen assemblages are consistent with the zonal vegetation; shrub pollen percentages are mostly less than 20%, except for Artemisia and Hippophae rhamnoides communities.There are obvious trends for the pollen percentage ratios of Artemisia to Chenopodiaceae (A/C), Pinus to Artemisia (P/A) and arbor to non-arbor (AP/NAP) in the different ecological regions. In the temperate deciduous broad-leaved forest region, the P/A ratios are generally higher than 0.1, the A/C ratios higher than 2 and the AP/NAP ratios higher than 0.3. In the temperate steppe regions, the P/A ratios are generally less than 0.1, the A/C ratios higher than 1 and the AP/NAP ratios less than 0.1. In the temperate desert regions, the P/A ratios are generally less than 0.1, the A/C ratios less than 1, and the AP/NAP ratios less than 0.1.The study on the representation and indication of pollen to vegetation shows that Pinus, Artemisia, Betula, Chenopodiaceae, Ephedra, Selaginella sinensis etc. are over-representative in the pollen assemblages and can only indicate the regional vegetation. Some pollen types, such as Quercus, Carpinus, Picea, Abies, Elaeagus, Larix, Salix, Pterocelis, Juglans, Ulmus, Gleditsia, Cotinus, Oleaceae, Spiraea, Corylus, Ostryopsis, Vites, Tetraena, Caragana, Tamaricaceae, Zygophyllum, Nitraria, Cyperaceae, Sanguisorba etc. are under-representative in the pollen assemblages, and can indicate the plant communities well. Populus, Rosaceae, Saxifranaceae, Gramineae, Leguminosae, Compositae, Caprifoliaceae etc. can not be used as significant indicators to the plants.The study on the relation of pollen percentages with plant covers shows that Pinus pollen percentages are more than 30% where pine trees exist in the surrounding region. The Picea+Abies pollen percentages are higher than 20% where the Picea+Abies trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Larix pollen percentages vary from 5% to 20% where the Larix trees are dominant in the communities, but less than 5% where the parent plants are sparse or absent. Betula pollen percentages are higher than 40% where the Betula trees are dominant in the communities" but less than 5% where the parent plants are sparse or absent. Quercus pollen percentages are higher than 10% where the Quercus trees are dominant in the communities, but less than 1% where the parent plants sparse or absent. Carpinus pollen percentages vary from 5% to 15% where the Carpinus trees are dominant in the communities, but less than 1% where the parent plants are sparse or absent. Populus pollen percentages are about 0-5% at pure Populus communities, but cannot be recorded easily where the Populus plants mixed with other trees in the communities. Juglans pollen accounts for 25% to 35% in the forest of Juglans mandshurica, but less than 1% where the parent plants are sparse or absent. Pterocelis pollen percentages are less than 15% where the Pterocelis trees are dominant in the communities, but cannot be recorded easily where the parent plants are sparse or absent. Ulmus pollen percentages are more than 8% at Ulmus communities, but less than 1% where the Ulmus plants mixed with other trees in the communities. Vitex pollen percentages increase along with increasing of parent plant covers, but the maximum values are less than 10 %. Caragana pollen percentages are less than 20 % where the Caragana plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent. Spiraea pollen percentages are less than 16 % where the Spiraea plant are dominant in the communities, and cannot be recorded easily where the parent plants are sparse or absent.The study on the relation of surface pollen assemblages with the modern climate shows that, in the axis 1 of DCA, surface samples scores have significant correlation with the average annual precipitations, and the highest determination coefficient (R2) is 0.8 for the fitting result of the third degree polynomial functions. In the axis 2 of DCA, the samples scores have significant correlation with the average annual temperatures, average July temperatures and average January temperatures, and the determination coefficient falls in 0.13-0.29 for the fitting result of the third degree polynomial functions with the highest determination coefficient for the average July temperature.The sensitivity of the different pollen taxa to climate change shows that some pollen taxa such as Pinus, Quercus, Carpinus, Juglans, Spiraea, Oleaceae, Gramineae, Tamariaceae and Ephedra are only sensitive to the change in precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

文章介绍了海北高寒草甸试验区的野外考察现场和考察情况,并对青海海北高寒草甸矮嵩矮嵩草草甸试验区的小气候考察结果进行了讨论,结果表明:高寒草甸地区具有明显高寒大陆性气候特征,日较差大,日照时间长,地表强度具明显的周期变化,太阳辐射强烈,全年总辐射量5.866~6.704*10~6KJ/m~2,但较湿润,可为研究高寒草甸小气候特点、局地生态环境和指导生产实践提供科学依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

改进了适合于高寒草甸生态系统的陆地生态圈模式,分析了模式中温度变化与水分运动分层的物理原因,说明了气候状况对地表面能量交换的影响,给出了净辐射和蒸散量新的计算方法,提出了有很差分计算中具有二阶精度的Euler隐式格式,介绍了中国科学院海北高寒草甸生态站的气候概况和野外观测情况。最后利用本模式对高寒草甸生态站地区的土壤-植被-大气间水热交换过程进行了数值模拟,模拟值与实测值吻合较好。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

盐生草甸是新疆平原草地生物生产力最高的植被类型。而豆科植物疏叶骆驼刺则是盐毕草甸植被的常见种类。此项工作对疏叶骆驼刺天然分布的范围及其生态环境条件,特别是土壤水盐状况和与该植物相联系的植物群落类型进行了调查分析。本文通过对K、Na、Ca、Mg4种金属盐性元素在土壤—疏叶骆驼刺系统中的迁移进行分析,探讨该种植物在盐化土壤环境中的生长状况与主要盐性金属元素的相互关系;通过对包括土壤植物体内元素含量、土壤水盐状况、植株生长状况等指标的综合分析,研究其生态适应关系和种群与土壤水盐状况的关系;通过对植物器官形态解剖学的研究,探讨该种植物与盐生土壤环境生态适应的生物结构基础和耐盐的生理途径;通过对土壤盐化过程影响因素和土壤盐化趋势的分析,结合疏叶骆驼刺的生态学特性,探讨该种植物在新疆盐化土壤的可能利用价值。结果如下: 1、疏叶骆驼刺为中生适弱盐化的潜水草甸植物。在有潜水发育的地带,其生存适应土壤盐化环境的范围较广。 2、在天然条件下,疏叶骆驼刺以根萌生新芽繁殖方式为主。在弱盐化和土壤水分较充足的地带,可以种子繁殖再生新株。 3、作为盐生草甸植被与荒漠植被间过渡类型中常出现的种类,疏叶骆驼刺的种群消长代表了一定的土壤盐化的演替阶段。 4、该种植物的器官组织显微结构显示出其与盐化土壤环境关系上特殊的适应机制。 5、在植物的生长发育过程中,金属盐性元素的迁移积累变化的性质表明,在一定条件下,该种植物对土壤盐性具有改善作用。 6、面对新疆盐化土地使用状况和土壤盐化退化的趋势,疏叶骆驼刺的生态利用潜势很大。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文以全球变化对绿洲水文循环影响为主线,分析了地处干旱区的绿洲在全球变化下的演变趋势。以塔里木盆地北部渭干河绿洲为例,探讨了其水量平衡、非灌溉土壤积盐特性、隐域性盐化草甸植被NPP,以及绿洲土地利用/覆被变化对全球变化的响应。从不同时间尺度上分析了全球变化的两大驱动因子,气候变化和人类活动对绿洲演化的影响。运用系统动力学模型模拟了未来30年绿洲土地覆被变化在上述两驱动因子的作用下的动态演变过程。其主要结论如下: 1、从生态学的角度,绿洲可定义为:存在于干旱、半干旱区的依赖于水源而生存的隐域性绿色景观.地质时期,绿洲的演化由气候等自然因子起决定作用;人类历史时期,在气候等自然因素的大背景下,人类活动对绿洲演变的作用越来越大;近百年来,绿洲的演变则主要受人为活动干扰。 2、在不改变绿洲现有土地利用格局和水资源利用率的情况下,当年平均气温升高2.5℃,无论降水增加200%或不增加,绿洲的水资源量都将出现负平衡,全球变化将使绿洲面临更为严重的水资源短缺。 3、绿洲自然土壤0-5 0cm土层积盐速率对全球变化的响应程度依地下水埋深的大小而有所差异。地下水埋深较小,积盐速率随温度的升高增加较明显;地下水埋深较大时,积盐速率变化不明显。当地下水埋深>2m,地表积盐速率不再随气候变化而变化.地下水埋深h=2m为渭干河绿洲非灌溉土壤地表积盐速率对全球变化响应的临界深度。 4、根据绿洲地下水埋深与植被NPP的相关关系,推导出了估算盐化草甸植被NPP的模型: NPP=-O. 991+0. 0005Eo (h-0. 25h^2+0. 021h^3) +5. 276EXP (-0. 651h) 并分别估算了当前及全球变化下的NPP值。盐化草甸植被NPP随地下水埋深的增加呈指数下降。全球变化下,地下水埋深较大时,NPP的增加较明显;地下水埋深较小时,NPP的增加不明显。 5、灵敏度分析表明:NPP对地下水埋深h的变化比对地下水矿化度变化为更敏感。h=3. 3m为渭干河绿洲盐化草甸植被的胁迫深度。 6、系统动力学模型模拟表明,渭干河绿洲耕地面积的增减受水资源利用率和人口数量变化的制约。全球变化下,由于水文状况的改变,未来30年将导致绿洲耕地面积增幅下降4. 5-5.1%。绿洲水文状况和人口数量变化是决定土地利用格局变化的关键驱动因素。 7、绿洲灌溉土地的优化模式为,耕地:林地:改良草地=70: 23:7;种植业(耕地)内部的比例为,粮食作物:经济作物:人工草地=46: 31: 23。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文综述了草原群落土壤呼吸研究的理论、方法、最新进展和主要成果。从2001年6月5日到10月15日,在内蒙古锡林河流域的一个典型草原群落放牧地段用气相色谱法对土壤呼吸进行了测定,并同期观测相应的环境因子,分析了它们之间的相互关系,并根据根系生物量和土壤呼吸的相关性外推出根系呼吸占土壤总呼吸的比例。同时,采用碱液吸收法对该草原群落和一个沼泽化草甸群落的土壤呼吸进行了比对测定,比较在不同生境下土壤呼吸速率的差异。另外,重点比较了两种常用的土壤呼吸测量方法——碱液吸收法和气相色谱法对典型草原群落土壤呼吸的测量效果。主要研究成果如下: 1.在草原群落,生物量(包括地上和地下生物量)、温度(包括气温和土壤温度)和水分及土壤呼吸的季节变化均呈不规则的波动曲线;土壤呼吸与土壤湿度高度相关,与温度尤其是土壤温度以及地下生物量之间存在着一定的相关性,但和地上生物量及绿色生物量之间几乎没有关系。 2.草原群落和草甸群落土壤呼吸的季节动态基本一致,均出现了两个峰值,分别出现在6月底和7月底,它们的变化范围分别为312.8~1738.9 mg C﹒m-2﹒d-1 和 354.6 ~2235.6 mg C﹒m-2﹒d-1,日平均土壤呼吸速率分别为785.9 mg C﹒m-2﹒d-1 和1349.6 mg C﹒m-2﹒d-1,草甸群落的土壤呼吸速率明显高于草原群落; 3.土壤水分是草原群落土壤呼吸的主要限制因子,但对草甸群落的土壤呼吸变化却基本没有影响;草甸群落中,地上总生物量与土壤呼吸速率间没有显著的相关关系,但地上部分绿色生物量与土壤呼吸间存在着显著的幂函数关系,而在草原群落中,土壤呼吸速率与地上活生物量或地上总生物量的相关关系均很弱。 4.在草原群落,根系呼吸占土壤总呼吸的比例为60.7% - 93.3%,平均为82%; 5.碱液吸收法和气相色谱法的测定结果具有很高的相关性(R2=0.7563),它们的季节动态基本一致,变化范围分别为从249.3~1795.1 mg C﹒m-2﹒d-1和从312.8~1738.9 mg C﹒m-2﹒d-1,平均值分别为634.2 mg C﹒m-2﹒d-1和802.7 mg C﹒m-2﹒d-1,碱液吸收法的测量值是气相色谱法的约1.4倍。