461 resultados para Waveguide coupler
Resumo:
Based on silicon-on-insulator (SOI) technology, a Mach-Zehnder interferometer (MZI) is fabricated, in which two directional couplers serve as power splitter and combiner. The free carrier plasma dispersion effect of Si is adopted to achieve the phase modulation and the consequent intensity modulation of optical fields. The device presents an insertion loss of 2.61 dB and an extinction ratio of 19.6 dB. The rise time and fall time are 676 ns and 552 ns, respectively. Detailed analysis and explanation of the performance behaviors are also presented. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We propose an approach to construct waveguide intersections with broad bandwidth and low cross-talk for square-lattice photonic crystals. by utilizing a vanishing overlap of the propagation modes in the waveguides created by defects which support dipole-like defect modes. The finite-difference time-domain method is used to simulate the waveguide intersection created in the two-dimensional square-lattice photonic crystals. Over a bandwidth of 30 nm with the center wavelength at 1300 nm, transmission efficiency above 90% is obtained with cross-talk below -30 dB. Especially, we demonstrate the transmission of a 500-fs pulse at 1.3 Am through the intersection, and the pulse after transmission shows very little distortion while the cross-talk remains at low level meantime. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report a diode-end-pumped passively Q-switched Nd:GdVO4 laser operating at 1.06 mu m with In0.25Ga0.75As being the saturable absorber as well as an output coupler. Q-switched pulses with a pulse duration of 20 ns, pulse energy 4.2 mu J and pulse repetition rate 200 kHz were produced, corresponding to peak power of 210 W. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A small-size optical interleaver based on directional coupler in a 2D photonic crystal slab with triangular lattice of air holes is designed and theoretically simulated using plane wave expansion and finite-difference time-domain method. The interleaver is formed by two parallel and identical photonic crystal slab waveguides which are separated by three rows of air holes. The coupling region is designed below the light line to avoid vertical radiation. The simulated results show that the coupling coefficient is increased and the final length of the interleaver is decreased by enlarging the radius of the middle row of air holes. The transmission properties are analyzed after the interleaver's structure is optimized, and around 100 GHz channel spacing can be got when the length of the interleaver is chosen as 40.5 mu m. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
National Natural Science Foundation of China 60677045 60876049
Resumo:
The mode edges of photonic crystal waveguide with triangular lattice based on a silicon-on-insulator slab are investigated by combination of the effective index method and two-dimensional plane wave expansion method. The variations of waveguide-mode edges with structure parameters of photonic crystal are deduced. When the ratio of the radius of air holes to the lattice constrant, r/Lambda, is fixed and the lattice constant of photonic crystal, Lambda, increases, the waveguide-mode edges shift to longer wavelengths. When Lambda is fixed and r/Lambda increases, the waveguide-mode edges shift to shorter wavelengths. Additionally, when r/Lambda and Lambda are both fixed, the radius of the two-row air holes adjacent to the waveguide increases, the waveguide-mode edges shift to shorter wavelengths.
Resumo:
A 40-channel 0.8-nm-spaced flat-top silica-based arrayed waveguide grating (AWG) with a tapered multimode interferometer (MMI) at the end of its input waveguide has been experimentally demonstrated for the first time. By adding the MMI, the 1-dB and 3-dB bandwidths are increased to 0.45 and 0.62 nm, respectively. The insertion loss (IS) of the device ranges from 3.8 to 6.8 dB. The IS uniformity is better than 3.0 dB. The crosstalk is better than -25 dB. Compared to the AWG with a rectangular MMI, the AWG with a tapered MMI shows better IS, crosstalk, and ripple. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an efficient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.
Resumo:
A 16 x 16 thermo-optic wavelenght switch matrix has been designed and febricated on silicon-on-insulator wafer. For reducing device lenght, blocking switch matrix configuration is chosen. The building block of a matix is a 2 x 2 cell with Mach-Zehnder interferometer configuration, where a multi-mode interferometer serves as splitters/combiners. Spot size converters and isolating grooves are integrated on the same chip to reduce loss and power consumption. Average power consumption of the switch cell is 220 mW. The switching time of a switch cell is less than 3 mu s.
Resumo:
We have demonstrated an efficient and compact passively Q-switched and mode-locked (QML) 1064 nm Nd:YVO4 laser by using a low temperature grown GaAs (LT-GaAs) saturable absorber as well as an output coupler. Stable QML with envelope duration as short as 10 ns and Q-switched repetition rate of 36 kHz was obtained. It is the shortest envelope duration as far as we know, and it is so short that it can be used as Q-switching pulses directly. At 6.9 W of the incident pump power, average output power of 1.24 W was achieved and the corresponding peak power and energy of a single Q-switched pulse were 3.44 kW and 34.4 mu J, respectively. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of 780 MHz. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A 1.55-mu m ridge distributed feedback laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter (SSC) at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum-well intermixing, and dual-core technologies. These devices exhibit threshold current of 28 mA, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0-dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
We investigate theoretically spin-polarized transport in a one-dimensional waveguide structure under spatially periodic electric fields. Strong spin-polarized current can be obtained by tuning the external electric fields. It is interesting to find that the spin-dependent transmissions exhibit gaps at various electron momenta and/or gate lengths, and the gap width increases with increasing the strength of the Rashba effect. The strong spin-polarized current arises from the different transmission gaps of the spin-up and spin-down electrons. (c) 2006 American Institute of Physics.
Resumo:
We investigate theoretically the spin-polarized transport in one-dimensional waveguide structure with spatially-periodic electronic and magnetic fields. The interplay of the spin-orbit interaction and in-plane magnetic field significantly modifies the spin-dependent transmission and the spin polarization. The in-plane magnetic fields increase the strength of the Rashba spin-orbit coupling effect for the electric fields along y axis and decrease this effect for reversing the electric fields, even counteract the Rashba spin-orbit coupling effect. It is very interesting to find that we may deduce the strength of the Rashba effect through this phenomenon. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A compact eight-channel flat spectral response arrayed waveguide grating (AWG) multiplexer based on siliconon-insulator (SOI) materials has been fabricated on the planar lightwave circuit (PLC). The 1-dB bandwidth of 48 GHz and 3-dB bandwidth of 69 GHz are obtained for the 100 GHz channel spacing. Not only non-adjacent crosstalk but also adjacent crosstalk are less than -25 dB. The on-chip propagation loss range is from 3.5 to 3.9 dB, and the 2 total device size is 1.5 x 1.0 cm(2). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Guest host polymer thin films of polymethyl methacrylate (PMMA) incorporated with (4'-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were fabricated by spin coating and then poled by the method of corona-onset poling at elevated temperature. The absorption mechanism of the polymeric film, which is very important for the optical transmission losses and directly relates to the orientation of chromophore NAEC in polymer PMMA, was investigated in detail. From the UV-visible absorption spectra for NAEC/PMMA film before and after being poled, we determined the change of absorption coefficient kappa with the wavelength and approximately calculated the maximum absorption A(parallel tomax) as 3.46 for incident light propagating parallel through the film, i.e. the ordinary polarized light, which cannot be directly measured in the spectro photometer. (C) 2002 Elsevier Science Ltd. All rights reserved.