103 resultados para Uniaxial test
Resumo:
Biodegradable poly(e-caprolactone) (PCL) foams with a series of controlled structures were prepared by using chemical foaming method. The cell morphology was detected by scanning electron microscope (SEM). The compressive behavior of the foams was investigated by uniaxial compression test. The effect of density and structural parameters on the foam compressive behavior was analyzed. It was found that the relative compressive modulus has a power law relationship with relative density. Increasing of both the cell wall thickness and the cell density lead to higher compressive modulus of the foam; however, the cell size has no distinct effect on compressive behavior.
Resumo:
CoFe2O4 nanoparticles prepared by chemical coprecipitation method in a magnetic field exhibit novel magnetic properties. The average particle diameter was about 2 nm and larger depending on the post annealing temperature. Magnetization measurements indicate that smaller nanoparticles are superparamagnetic above their respective blocking temperatures. In the blocked state, these nanoparticles exhibit interesting behaviors in the magnetic hysteresis measurements. Constricted, or wasp waisted with extremely narrow waist, hysteresis curves have been observed in the magnetization versus field sweeps. For larger nanoparticles, the room temperature hysteresis is typical of a ferromagnet with an open loop, but the loop closes at lower temperature. The novel magnetic behavior is attributed to the directional order of Co ions and vacancies in CoFe2O4 established during the coprecipitation of the nanoparticles under an applied field.
Resumo:
Synchrotron small angle X-ray scattering was used to study the deformation mechanism of high-density polyethylene that was stretched beyond the natural draw ratio. New insight into the cooperative deformational behavior being mediated via slippage of micro-fibrils was gained. The scattering data confirm on the one hand the model proposed by Peterlin on the static structure of oriented polyethylene being composed of oriented fibrils, which are built by bundles of micro-fibrils. On the other hand it was found that deformation is mediated by the slippage of the micro-fibrils and not the slippage of the fibrils. In the micro-fibrils, the polymer chains are highly oriented both in the crystalline and in the amorphous regions. When stretching beyond the natural draw ratio mainly slippage of micro-fibrils past each other takes place. The thickness of the interlamellar amorphous layers increases only slightly. The coupling force between micro-fibrils increases during stretching due to inter-microfibrillar polymer segments being stretched taut thus increasingly impeding further sliding of the micro-fibrils leading finally to slippage of the fibrils.
Resumo:
A novel "gold electrode-molecular wires-silver" junction was facilely fabricated for electrochemical study on the electron transportation through molecular wires. Rapid electron transportation through this sandwich-like structure was indeed observed by cyclic voltammograms and ac impedance measurements. Since rather reproducible and reliable results are easily available by electrochemical techniques, it would be an efficient and reliable test bed for electrochemical investigation of charge transportation through molecular wires in self-assembled monolayers on electrodes.
Resumo:
Micro-failure modes and statistical fragment lengths in the hybrid fiber and non-hybrid reference composites in the uniaxial tension were investigated. Similiar to the reference experiments, fibers in hybrid strong interface/medium interface fiber composites display a decrease in aspect ratio and an increase in interfacial shear stress (IFSS) with the increase of inter-fiber spacing. While for the fibers with weak interfaces in the hybrid strong interface/weak interface fiber composites, the aspect ratio increases and IFSS decreases with enlargement of inter-fiber spacing, which is contrary to other systems. Finite element numerical analysis was used to interpret the special phenomena.
Resumo:
In "high nitrate, low chlorophyll" (HNLC) ocean regions, iron has been typically regarded as the limiting factor for phytoplankton production. This "iron hypothesis" needs to be tested in various oceanic environments to understand the role of iron in marine biological and biogeochemical processes. In this paper, three in vitro iron enrichment experiments were performed in Prydz Bay and at the Polar Front north of the Ross Sea, to study the role of iron on phytoplankton production. At the Polar Front of Ross Sea, iron addition significantly (P < 0.05, Student's t-test) stimulated phytoplankton growth. In Prydz Bay, however, both the iron treatments and the controls showed rapid phytoplankton growth, and no significant effect (P > 0.05, Student's t-test) as a consequence of iron addition was observed. These results confirmed the limiting role of iron in the Ross Sea and indicated that iron was not the primary factor limiting phytoplankton growth in Prydz Bay. Because the light environment for phytoplankton was enhanced in experimental bottles, light was assumed to be responsible for the rapid growth of phytoplankton in all treatments and to be the limiting factor controlling field phytoplankton growth in Prydz Bay. During the incubation experiments, nutrient consumption ratios also changed with the physiological status and the growth phases of phytoplankton cells. When phytoplankton growth was stimulated by iron addition, N was the first and Si was the last nutrient which absorption enhanced. The Si/N and Si/P consumption ratios of phytoplankton in the stationary and decay phases were significantly higher than those of rapidly growing phytoplankton. These findings were helpful for studies of the marine ecosystem and biogeochemistry in Prydz Bay, and were also valuable for biogeochemical studies of carbon and nutrients in various marine environments.
Resumo:
The small mysid crustacean Neomysis awatschensis was collected in the west coast of Jiaozhou Bay, Qingdao, China in 1992 and acclimated and cultured in laboratory conditions since then. Standard acute toxicity tests using 4-6 d juvenile mysids of this species were conducted and the results were compared with Mysidopsis bahia, a standard toxicity test organism used in the US in terms of their sensitivities to reference toxins, as well as their taxonomy, morphology and geographic distributions. Because of its wide distribution along the Chinese coast, similar sensitivity to pollutants as M. bahia, short life history, small size and the case of handling, this study intended to use N. awatschensis as one of the standard marine organisms for toxicity testing in China. The species were applied to acute toxicity evaluations of drilling fluid and its additives I organotin TPT and toxic algae, and to chronic ( life cycle) toxicity assays of organotin TPT and a toxic dinofalgellate Alexandrium tamarense, respectively. Using N, awatschensis as a standard toxicity testing organism in marine pollution assessment in China is suggested.
Resumo:
The present work is first reporting the hemolytic activity of venom from jellyfish Rhopilema esculentum Kishinouye extracted by different phosphate buffer solutions and incubated at different temperature according to the orthogonal test L6(1) x 3(6). Of the seven controllable independent variables, incubated temperature and phenylmethylsulfonyl fluoride (PMSF) had strongest effect on the hemolytic activity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A bench scale reaction test for methane aromatization in the absence of an added oxidant was performed and its reaction result evaluated based on the carbon balance of the system. The result was compared with those obtained from the micro-reaction test to ensure the accuracy of the internal standard analyzing method employed in this paper. The catalytic performances of modified Mo/HZSM-5 catalysts were examined. It was found that pre-treatment by steam on HZSM-5 weakened the serious deposition of coke, and pre-impregnation of n-ethyl silicate on HZSM-5 could improve the conversion of CH4, but had little effect on coke formation. A low temperature activation procedure including pre-reduction of the catalyst with methane prevents the zeolite lattice from being seriously destroyed by high valence state Mo species when the Mo loading is high. It was suggested that Mo2C species detected by XRD spectra was the active phase for CH4 aromatization.
Resumo:
In the present paper, a 60 h life-time test of a direct ethanol fuel cell (DEFC) at a current density of 20 mA cm(-2) (the beginning 38 h) and 40 mA cm(-2) (the last 22 h) was carried out. After the life-time test, the MEA could not achieve the former performance. X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX) were employed to characterize the anode and cathode catalyst before and after the life-time test. The XRD and TEM results showed that the particle size of the anode catalyst increased from 2.3 to 3.3 nm and the cathode from 3.0 to 4.6 nm. The EDX results of PtSn/C anode catalysts before and after the life-time test indicated that the content of the oxygen and tin, especially the content of the platinum, decreased prominently after the life-time test. The results suggest that the agglomeration of electrocatalysts, the destruction of the anode catalyst together with the fuel/water crossover from anode to cathode concurrently contribute to the performance degradation of the DEFC. (C) 2005 Elsevier B.V. All rights reserved.