102 resultados para Trophic index
Resumo:
The general a(N) index (GAI) was used to characterize the cis, trans isomers of hydrocarbons. The best one-variable equations were obtained with GAI for several physicochemical properties of seven pairs of olefin cis, trans isomers. The linear correlation coefficients are in the range of 0.975 to 0.997. GAI was also compared with the other five topological indices, Randic connectivity index chi, Wiener number W, Hosoya index Z, the average distance sum connectivity J proposed by Balaban and a(N) index introduced by Yang, in correlating with the octane number (MON) of heptanes and octanes.
Resumo:
The relationship between the alpha-N index and physical properties of neutral phosphorus extractants is studied. Using the general alpha-N index which could describe extractants with minute difference in structure, the good correlation between it and various physical properties of the neutral phosphorus extractants (e.g., densities, refractive index, shift ratio of paper chromatography and IR frequencies of bond P = O) is obtained. The result indicates that general alpha-N index is a good topological index of organic compounds.
Resumo:
The general a(N) index is established for molecules containing heteroatoms, rings, and multiple bonds. The general a(N) index is able to describe molecules with minute differences in structure and can also reveal the properties of molecules. This theory is successfully applied to the case of neutral phosphorus extractants. Both the molecular polarity and steric effect are characterized by the general a(N) index. The relationships between these properties and the distribution ratios for extracting Y, Ce, U, and Th are also shown by the general a(N) index.
Resumo:
Nets in traditional Porphyra mariculture are seeded with conchospores derived from the conchocelis phase, and spend a nursery period in culture tanks or calm coastal waters until they reach several centimeters in length. Some species of Porphyra can regenerate the foliose phase directly through asexual reproduction, which suggests that the time, infrastructure, and costs associated with conchocelis culture might be avoided by seeding nets with asexual spores. Here, we present work from a short-term mariculture study using nets seeded with asexual spores (neutral spores) of a native Maine species of Porphyra. Porphyra umbilicalis (L.) Kutzing was selected for this proof of concept research because of its reproductive biology, abundance across seasons in Maine, and evidence of its promise as a mariculture crop. We studied the maturation, release, and germination of the neutral spores to develop an appropriate seeding protocol for nets, followed by development of a nursery raceway to provide an easily manipulated environment for the seeded nets. Neutral spores were produced throughout the year on the central Maine coast,however, there was a temporal variability in the number and survival of released neutral spores, depending upon thallus position in the intertidal zone. Small thalli were strictly vegetative, but most thalli reproduced by neutral spores- sexual reproduction was absent. Neutral spores germinated quickly at 10 and 15 'C, but germination was delayed at 5 degrees C. Unlike some algal zygotes and spores, neutral spores of R umbilicalis required light to germinate; however, irradiances of 25 and 100 mu mol photons M-2 S-1 were equally sufficient for germination. Rafts of seeded nets were deployed in Cobscook Bay, Maine, at two distances from salmon aquaculture pens and at a control site on a nearby, fallow aquaculture site (no salmon). There was no difference in nitrogen content of harvested thalli; however, both the density and the surface area of harvested thalli were different among the sites. The possible causes of these differences are discussed in the context of potential use of P umbilicalis in IMTA. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The chemical index of alteration has been used widely for reconstruction of the palaeoclimate. However, the mechanisms and environmental factors controlling the chemical index of alteration of sediments are not yet fully understood. In this study, autocorrelations of the chemical index of alteration in nine sedimentary profiles, from both the land and the sea, spanning different geological times, are discussed. The sediments of these profiles have different origins (dust, fluvial or ocean sediments) and are from various climate situations and sedimentary environments. Autocorrelations of chemical index of alteration series are ubiquitously evident in all profiles. It is suggested here that autocorrelations may be caused by post-depositional changes such as persistent weathering and diagenesis. As a result, the chemical index of alteration may not reflect climatic conditions during the time of sediment deposition. This study strongly recommends the confirmation of the reliability and veracity of the chemical index of alteration before it is adopted to evaluate the weathering degree of parent rocks and to reconstruct the past climate. Significant autocorrelations in loess profiles were specifically observed, suggesting that the existing understanding of loess deposition in terms of climate conditions requires re-examination, and that previous reconstructions of rapid climate changes (for example, in centennial-millennial scales) should be treated with caution.
Resumo:
In this study the red alga, Gracilaria lemaneiformis, was cultivated with the scallop Chlamys farreri in an integrated multi-trophic aquaculture (IMTA) system for 3 weeks at the Marine Aquaculture Laboratory of the Institute of Oceanology, Chinese Academy of Sciences (IOCAS) in Qingdao, Shandong Province, North China. The nutrient uptake rate and nutrient reduction efficiency of ammonium and phosphorus from scallop excretion were determined. The experiment included four treatments each with three replicates, and three scallop monoculture systems served as the control. Scallop density (407.9 +/- 2.84 g m(-3)) remained the same in all treatments while seaweed density differed. The seaweed density was set at four levels (treatments 1, 2, 3, 4) with thallus wet weight of 69.3 +/- 3.21, 139.1 +/- 3.80, 263.5 +/- 6.83, and 347.6 +/- 6.30 g m(-3), respectively. There were no significant differences in the initial nitrogen and phosphorus concentration between each treatment and the control group (ANOVA, p > 0.05). The results showed that at the end of the experiment, the nitrogen concentration in the control group and treatment 1 was significantly higher than in the other treatments. There was also a significant difference in phosphorus concentration between the control group and the IMTA treatments (ANOVA, p < 0.05). Growth rate, C and N content of the thallus, and mortality of scallop was different between the IMTA treatments. The nutrient uptake rate and nutrient reduction efficiency of ammonium and phosphorus changed with different cultivation density and time. The maximum reduction efficiency of ammonium and phosphorus was 83.7% and 70.4%, respectively. The maximum uptake rate of ammonium and phosphorus was 6.3 and 3.3 A mu mol g(-1) DW h(-1). A bivalve/seaweed biomass ratio from 1:0.33 to 1:0.80 (treatments 2, 3, and 4) was preferable for efficient nutrient uptake and for maintaining lower nutrient levels. Results indicate that G. lemaneiformis can efficiently absorb the ammonium and phosphorus from scallop excretion and is a suitable candidate for IMTA.
Resumo:
Pigment ingestion rate (PIR) and egg production rate (EPR) of the dominant copepod Calanus sinicus, as well as chlorophyll-a concentration and phytoplankton assemblages were measured in the Bohai Sea, North China in June 1997, October 1998 and May 1999. A herbivore index (H) was also calculated as the carbon specific ratio of PIR and EPR, in order to investigate its feeding habits in the spring and autumn phytoplankton bloom respectively. On average, chlorophyll-a concentration was relatively similar (1-1.34 mg m(-3)) in the three cruises, but PIR was quite different. It was 3.24 mu g C female(-1) d(-1) in October, equivalent to one half of the PIR for June and one third of the PIR for May. Average EPR was highest in May, and quite similar during the other two months. According to H values, herbivorous feeding contributed 100% of the egg production of C. sinicus in June, 82.5% in May, but only 47.8% in October. It is possible that omnivorous feeding of C. sinicus in October was induced by a prevalence of large-sized diatoms and sufficient non-phytoplankton food resources during the autumn bloom period.
Resumo:
Stable carbon and nitrogen isotope ratios of single tissues or whole bodies were analyzed to establish trophic positions of main consumers living at the alpine meadow ecosystem in the Tibetan Plateau. The results demonstrated that delta C-13 and delta N-15 values of vertebrates showed great variations and ranged from -26.83 to -22.51 parts per thousand and from 2.33 to 8.44 parts per thousand, respectively. Plateau pika, root vole, plateau hare, infants of rodents and hatchlings of passerine bird species had the lowest delta C-13 and delta N-15 values. delta C-13 and delta N-15 values of omnivorous and insectivorous birds and amphibians showed intermediate. Carnivorous species, steppe polecat and Upland buzzard, and omnivorous Robin accentor and White wagtail possessed extremely higher VC and delta N-15 values. Omnivorous birds captured in earlier year had significantly less negative delta C-13 and greater delta N-15 values than those captured later. Based on steady angular enrichment between trophic levels, an "alpha and vector model" combing delta C-13 and delta N-15 values was introduced to reveal trophic positions, the results indicated that Tibetan sheep, Tibetan yak, plateau pika, root vole, plateau hare, infants of small rodents showed the lowest trophic positions (TP 1.81-2.38). While omnivorous and insectivorous birds, their hatchlings and amphibians showed intermediate trophic positions (TP 2.06-2.89), carnivorous species steppe polecat and Upland buzzard, migrant birds possessed extremely higher trophic positions (TP 2.89-3.05). The isotopic investigation of organisms and the introduced "alpha and vector model" successfully demonstrated the same trophic positions and diet prediction of consumers as nitrogen enrichment model at the alpine meadow ecosystem. Besides of this information, the "alpha and vector model" can also be incorporated into multiple isotope signatures to infer trophic relationships. This angular enrichment model has the potential to address basic ecological questions, such as trophic structure, trophic dynamics, and energy flow in other terrestrial ecosystems of properly handled. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM =(TM3 -TM5)/(TM3 +TM5); for VGT data, NDSII is calculated as NDSIIVGT =(B2- MIR)/(B2 + MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.