108 resultados para Tinkling Spring Presbyterian Church (Augusta County, Va.)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

N isotope fractionation (epsilon) was first determined during ambient NO3- depletion in a simulated diatom spring bloom. After 48 h of N-starvation, NH4+ was resupplied to the diatoms in small pulses to simulate grazer-produced N and then epsilon was determined. Large variations in epsilon values were observed: from 2.0-3.6 to 14-0 parts per thousand during NO3- and NH4+ uptake, respectively. This is the first study reporting an epsilon value as low as 0 to 2 parts per thousand for NH4+ uptake and we suggest that greater N demand after N-starvation may have drastically reduced NH3 efflux out of the cells. Thus the N status of the phytoplankton and not the ambient NH4+ concentration may be the important factor controlling epsilon, because, when N-starvation increased, epsilon values for NH4+ uptake decreased within 30 h. This study may thus have important implications for interpreting the delta(15)N of particulate N in nutrient-depleted regimes in temperate coastal oceans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (< 2 mu m), nanophytoplankton (2-20 mu m), and microphytoplankton (> 20 mu m) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13-3.43 and 0.09-1.92 d(-1) for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 mu g C 1(-1) d(-1) at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pigment ingestion rate (PIR) and egg production rate (EPR) of the dominant copepod Calanus sinicus, as well as chlorophyll-a concentration and phytoplankton assemblages were measured in the Bohai Sea, North China in June 1997, October 1998 and May 1999. A herbivore index (H) was also calculated as the carbon specific ratio of PIR and EPR, in order to investigate its feeding habits in the spring and autumn phytoplankton bloom respectively. On average, chlorophyll-a concentration was relatively similar (1-1.34 mg m(-3)) in the three cruises, but PIR was quite different. It was 3.24 mu g C female(-1) d(-1) in October, equivalent to one half of the PIR for June and one third of the PIR for May. Average EPR was highest in May, and quite similar during the other two months. According to H values, herbivorous feeding contributed 100% of the egg production of C. sinicus in June, 82.5% in May, but only 47.8% in October. It is possible that omnivorous feeding of C. sinicus in October was induced by a prevalence of large-sized diatoms and sufficient non-phytoplankton food resources during the autumn bloom period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional (3-D) coupled physical and biological model was used to investigate the physical processes and their influence on the ecosystem dynamics of the Bohai Sea of China. The physical processes include M-2 tide, time - varying wind forcing and river discharge. Wind records from I to 31 May in 1993 were selected to force the model. The biological model is based on a simple, nitrate and phosphate limited, lower trophic food web system. The simulated results showed that variation of residual currents forced by M, tide, river discharge and time-varying wind had great impact on the distribution of phytoplankton biomass in the Laizhou Bay. High phytoplankton biomass appeared in the upwelling region. Numerical experiments based on the barotropic model and baroclinic model with no wind and water discharge were also conducted. Differences in the results by the baroclinic model and the barotropic model were significant: more patches appeared in the baroclinic model comparing with the barotropic model. And in the baroclinic model, the subsurface maximum phytoplankton biomass patches formed in the stratified water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the present estimated world population of 14.2 million yaks, approximately 13.3 million occur within Chinese territories (Food and Agriculture Organization of the United Nations, 2003). Although there is an extensive bibliography covering the species, few studies have been conducted in the area of foraging behaviour. The present study was conducted at pasture during the spring, transitional, summer and winter seasons to determine the daily temporal patterns of grazing and ruminating behaviour by yaks. During each study period, two 24 h recordings were undertaken with each of six mature dairy yaks. One study period was conducted on each of the transitional, summer and winter pastures, whereas, due to the considerable changes occurring in the morphology of the spring pasture, three separate studies were completed during March, April and May. During the second of these studies (April), the effect of level of concentrate supplementation on grazing and ruminating behaviour was also examined. Behaviour recordings were made using solid-state behaviour recorders. Short-term intake rates (IR, g min(-1)) were calculated by weighing yaks before and after approximately 1 h of grazing, retaining the faeces and urine excreted and applying a correction for insensible weight loss. Yaks spent less time grazing during the dry season (the early period on the spring pasture) compared with the later green swards (the later period on the spring pasture, the transitional pasture and the summer pasture) (P < 0.05). When the forage quality improved, but there was still insufficient mass (the later period on the spring pasture), the yaks extended their grazing time at the expense of other activities. During the early periods on the spring pasture, the short-term IR by yaks was up to 53 g DM min(-1), significantly higher than at other times (P < 0.05). The level of concentrate offered had little or no effect on grazing or ruminating time. The total eating time of the yaks offered 0.5 or 1.0 kg concentrate was 2.9 and 4.5 h day(-1) respectively, significantly lower than unsupplemented yaks (6.8 h) (P < 0.05). In general, yaks can regulate their foraging behaviour according to the changes of sward conditions in order to achieve optimal grazing strategies. (C) 2007 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using heterogeneous vegetation in alpine grassland through grazing is a necessary component of deintensification of livestock systems and conservation of natural environments. However, better understanding of the dynamics of animal feeding behaviour would improve pasture and livestock grazing managements, particularly in the early part of the spring season when forage is scarce. The changes in behaviour may improve the use of poor pastures. Then, enhancing management practices may conserve pasture and improve animal productivity. Grazing behaviour over 24 In periods by yaks in different physiological states (lactating, dry and replacement heifers) was recorded in the early, dry and later, germinating period of the spring season. Under conditions of inadequate forage, the physiological state of yaks was not the primary factor affecting their grazing and ruminating behaviour. Forage and sward state affected yaks' grazing and ruminating behaviour to a greater extent. Generally, yaks had higher intake and spent more time grazing and ruminating during the later part of the spring season, following germination of forage, than during the earlier dry part of the season. However, the live weight of yaks was less during pasture germination than during the early dry part of the season because the herbage mass is low, and the yaks have to expend much energy to seek feed at this particular time. (c) 2007 Elsevier B.V. All rights reserved.