139 resultados para Thermal-analysis
Resumo:
A blue emitting Sr2CeO4 phosphor with a one-dimensional structure has been prepared by a two-step spray pyrolysis (SP) method, starting from the aqueous solutions of metal nitrates with citric acid and polyethylene glycol (PEG) as additives. The material is ultimately designed for field emission displays (FEDs). X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), field emission scanning electron microscope pictures (FE-SEM) as well as photoluminescence (PL) and cathodoluminescence (CL) spectroscopy and lifetime measurements have been employed to characterize the samples. The morphology, PL and low voltage CL properties of Sr2CeO4 phosphors as-prepared using the SP method have been investigated by changing the concentration of the precursor solution, concentration of PEG, annealing temperature, acceleration voltage and filament current. The obtained Sr2CeO4 phosphor particles are spherical and of submicron size, 0.5-2 mu m. The emission spectrum of the phosphors shows a broad band with maximum at 467 nm (lifetime = 37.4 mu s; CIE chromaticity coordinates: x = 0.15 and y = 0.21), presumably due to a ligand-to-metal charge-transfer transition.
Resumo:
A facile molten salt synthesis route was developed to prepare ZnTiO3 ceramic powders with simple oxides ZnO and TiO2 using sodium and potassium chloride eutectic salts as flux. The role of calcination temperature and time and the amount of salt addition to ZnTiO3 formation was investigated by thermogravimetry-differential thermal analysis, X-ray diffraction and Fourier transformation-infrared spectroscopy measurements. Pure hexagonal phase of ZnTiO3 could be obtained from the mixture of the simple oxides and the chlorides (50 mol% KCl, 20 times to oxides in molar ratio) heating at 800 degrees C for 6 h. The scanning electron microscopy images revealed the products were hexagonal sheets of about 1-3 mu m size. Increasing the amount of salt aids in reducing the crystal sizes of final ceramic powders because of diluting the solution.
Resumo:
New series of oxides, La3MMo2O12 (M = In, Ga and Al), have been prepared by the solid-state reaction. The composition and elemental distribution were analyzed by the energy-dispersive X-ray (EDX) analysis. As determined by the X-ray diffraction (XRD), these compounds have similar crystal structures that can be indexed on a monoclinic cell at room temperature. AC impedance spectra and the DC electrical conductivity measurements in various atmospheres indicate that they are oxide ion conductors with ionic conductivities between 10(-2) and 10(-3) S/cm at 800 degrees C. The conductivity decreases in the order of La3GaMo2O12 > La3AlMo2O12 > La3InMo2O12, implying that the effect of cell volume and polarization associated with In3+, Ga3+ and Al3+ play an important role in the anion transport of these materials. The reversible phase transition was observed in all these compounds as confirmed by the differential thermal analysis (DTA) and dilatometric measurements.
Resumo:
The synthesis of nanocrystalline W-type hexaferrites Ba(CoxZn1-x)(2)Fe16O27 powders by sol-gel auto-combustion method has been investigated. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The results reveal that the dried gel exhibits auto-combustion behavior. After combustion, pure nanocrystalline W-type hexaferrite phase starts to appear at the calcination temperature of 800 degrees C. The crystallinity and the grain size increase at higher temperature. The saturation magnetization and coercivity clearly depend on calcination temperature and Co content X.
Resumo:
The PVP/lanthanum nitrate/zirconium oxychloride (PVP-precursor) nanofiber was prepared by electrospinning technique. Lanthanum zirconate (La2Zr2O7, LZ) in the nanofiber is formed after calcination at 800 degrees C and the nanofiber with pyrochlore structure and a diameter of 100-500 nm can be obtained by calcination of the above precursor fiber at 1000 degrees C for 12 h. The surface of the fiber is rough but the continuous microstructure is still maintained after calcination. LZ fibers stack randomly, resulting in a structure with a low contact area between the fibers. This special structure makes the fiber to have a high resistance to sintering at elevated temperatures. The BET (Brunauer-Emmett-Teller) specific surface areas of the LZ fiber and powder calcined at different temperatures are shown in this paper, and the fiber was characterized by TG-DTA (thermal gravimetry-differential thermal analysis), XRD (X-ray diffraction), N-2 absorption-desorption porosimetry and SEM (scanning electron microscopy).
Resumo:
A series of novel ternary polyimide/SiO2/polydiphenylsiloxane (PI/SiO2/PDPhS) composite films were prepared through co-hydrolysis and condensation between tetramethoxysilane, diphenyldimethoxysilane (DDS) and aminopropyltriethoxysilane-terminated polyamic acid, using an in situ sol-gel method. The composite films exhibited good optical transparency up to 30 wt% of total content of DDS and SiO2. SEM analysis showed that the PDPhS and SiO2 were well dispersed in the PI matrix without macroscopic separation of the composite films. TGA analysis indicated that the introduction of SiO2 could improve the thermal stability of the composite films. Dynamic mechanical thermal analysis showed that the composite films with low DDS content (5 wt%) had a higher glass transition temperature (T-g) than pure PI matrix. When the content of DDS was above 10 wt%, the T-g of the composite decreased slightly due to the plasticizing effect of flexible PDPhS linkages on the rigid PI chains. The composite films with high SiO2 content exhibited higher values of storage modulus. Tensile measurements also showed that the modulus and tensile strength of the composite films increased with increasing SiO2 content, and the composite films still retained a high elongation at break due the introduction of DDS.
Resumo:
A new oxide ion conductor, La3GaMo2O12, with a bulk conductivity of 2.7 X 10(-2) S.cm(-1) at 800 degrees C in air atmosphere was prepared by the traditional solid-state reaction. The room temperature X-ray diffraction data could be indexed on a monoclinic cell with lattice parameters of a=0.5602(2) nm, b=0.3224(1) nm, c= 1.5741(1) nm, beta= 102.555(0)degrees, V=0.2775(2) nm(3) and space group Pc(7). Ac impedance measurements in various atmospheres further support that it is an oxide ion conductor. This material was stable in various atmospheres with oxygen partial pressure P(O-2) ranging from 1.0 X 10(5) to 1.0 X 10(-7) Pa at 800 degrees C. A reversible polymorphic phase transition occurred at elevated temperatures as confirmed by the differential thermal analysis and dilatometric measurement.
Resumo:
Rare-earth ion (Eu3+, Tb3+, Ce3+)- doped LaPO4 nanocrystalline thin films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography on silicon and silica glass substrates. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), scanning electron microcopy (SEM), optical microscopy, absorption and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicate that the films begin to crystallize at 700 degreesC and the crystallinity increases with increasing annealing temperature. The morphology of the thin film depends on the annealing temperature and the number of coating layers. The 1000 degreesC annealed single layer film is transparent to the naked eye, uniform and crack-free with a thickness of about 200 nm and an average grain size of 100 nm. Patterned thin films with different strip widths ( 5 - 50 mm) were obtained by micromolding in capillaries ( soft lithography). The doped rare earth ions show their characteristic emission in the nanocrystalline LaPO4 films, i.e., Eu3+ D-5(0)-F-7(J) (J = 1, 2, 3, 4), Tb3+ D-5(3,4) - F-7(J) ( J = 6, 5, 4, 3, 2) and Ce3+ 5d-4f transition emissions, respectively. Both the lifetimes and the PL intensities of Eu3+ and Tb3+ increase with increasing annealing temperature, and the optimum concentrations for them were determined to be 5 mol% and 16 mol% of La3+ in LaPO4 thin films, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in LaPO4 nanocrystalline thin films, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.
Resumo:
CaWO4 phosphor films doped with rare-earth ions (Eu3+, Dy-,(3+) Sm3+, Er3+) were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis, atomic force microscopy, and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting powders and films. The results of the XRD analysis indicated that the films began to crystallize at 400degreesC and that the crystallinity increased with elevation of the annealing temperature. The doped rare-earth ions showed their characteristic emissions in crystalline CaWO4 phosphor films due to energy transfer from WO42- groups to them. Both the lifetimes and PL intensities of the doped rare-earth ions increased with increasing annealing temperature, from 500 to 900degreesC, and the optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined as 30, 1.5, 1.5, 0.5 at.% of Ca2+ in CaWO4 films annealed at 900degreesC, respectively.
Resumo:
Nanocrystalline Y2O3:Eu3+ phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained, which mainly consisted of grains with an average size of 70 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped Eu3+ showed its characteristic emission in crystalline Y2O3 phosphor films due to an efficient energy transfer from Y2O3 host to them. Both the lifetimes and PL intensity of the Eu3+ increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+ were determined to be 5 mol%.
Resumo:
A new series of oxides, Ce6-xErxMoO15-delta (0.0 less than or equal to x less than or equal to 1.5), was synthesized using wet-chemistry techniques. The precursors and resultant oxide powders were characterized by differential thermal analysis/thermogravimetry, x-ray diffraction, and IR, Raman and x-ray photoelectron spectroscopy. The formation temperature of the powders was found to be as low as 350degreesC. Ce6-xErxMoO15-delta crystallized to a fluorite-related cubic structure. The electrical conductivity of the samples was investigated by using ac impedance spectroscopy. This showed that the presence of Er was related to the oxygen-ion conductivity, and that the highest oxygen-ion conductivity was found in Ce6-xErxMoO15-delta (x = 0.4), ranging from 5.9 x 10(-5) S cm(-1) at 300degreesC to 1.26 x 10(-2) S cm(-1) at 700degreesC, respectively. This kind of material shows a potential application in intermediate-temperature solid oxide fuel cells.
Resumo:
2,2',3,3'-Oxydiphthalic dianhydride (2,2',3,3'-ODPA) and 2,3,3',4'-ODPA were synthesized from 3-chlorophthalic anhydride with 2,3-xylenol and 3,4-xylenol, respectively. Their structures were determined via single-crystal X-ray diffraction. A series of polyimides derived from isomeric ODPAs with several diamines were prepared in dimethylacetamide (DMAc) with the conventional two-step method. Matrix-assisted laser desorption/ionization time-of-flight spectra showed that the polymerization of 2,2',3,3'-ODPA with 4,4'-oxydianiline (ODA) has a greater trend to form cyclic oligomers than that of 2,3,3',4'-ODPA. Both 2,2',3,3'-ODPA and 2,3,3',4'-ODPA based polyimides have good solubility in polar aprotic solvents such as DMAc, dimethylformamide, and N-methylpyrrolidone. The 5% weight-loss temperatures of all polyimides were obtained near 500 degreesC in air. Their glass-transition temperatures measured by dynamic mechanical thermal analysis or differential scanning calorimetry decreased according to the order of polyimides on the basis of 2,2',3,3'-ODPA, 2,3,3',4'-ODPA, and 3,3',4,4'-ODPA. The wide-angle X-ray diffraction of all polyimide films from isomeric ODPAs and ODA showed some certain extent of crystallization after stretching. Rheological properties revealed that polyimide (2,3,3',4'-ODPA/ODA) has a comparatively lower melt viscosity than its isomers, which indicated its better melt processability.
Resumo:
Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM) and optical microscopy, UV/vis transmission and absorption spectra, photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 400 degreesC and the crystallinity increased with the increase of annealing temperatures. Transparent nonpatterned phosphor films were uniform and crack-free, which mainly consisted of grains with an average size of 90 nm. Patterned gel and crystalline phosphor film bands with different widths (5-60 mum) were obtained. Significant shrinkage and a few defects were observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline YVO4 phosphor films because of an efficient energy transfer from vanadate groups to them. The Sm3+ and Er3+ ions also showed upconversion luminescence in a YVO4 film host. Both the lifetimes and PL intensity of the rare earth ions increased with increasing annealing temperature from 400 to 800 degreesC, and the optimum concentration for Eu3+ was determined to be 7 mol % and those for Dy3+, Sm3-, and Er3+ were 2 Mol % of Y3- in YVO4 films, respectively.
Resumo:
A new bimetallic cluster complex with the formula [(Mn(phen)(2))(2)V4O12].1/2 H2O has been synthesized through hydrothermal reaction of vanadate staring material with manganese cation in the presence of nitrogen donor chelating ligand and characterized by single-crystal X-ray diffraction, elemental analysis, IR UV-vis, ESR spectrum and thermal analysis. The compound crystallize in the monoclinic space group P2(1)/c with a = 18.475(4) Angstrom, b = 11.473(2) Angstrom, c = 23.667(5) Angstrom, beta = 97.76(3)degrees, V = 4971(2) Angstrom(3) and Z = 4. The structure of [{Mn(phen)(2)}(2)V4O12].1/2 H2O is composed of a discrete V4O124- cluster covalently attached to two [Mn(phen)(2)](2+) fragments.
Resumo:
In this work, crystallization and melting behavior of metallocene ethylene/alpha-olefin copolymers were investigated by differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The results indicated that the crystallization and melting temperatures for all the samples were directly related to the long ethylene sequences instead of the average sequence length (ASL), whereas the crystallization enthalpy and crystallinity were directly related to ASL, that is, both parameters decreased with a decreasing ASL. Multiple melting peaks were analyzed by thermal analysis. Three phenomena contributed to the multiple melting behaviors after isothermal crystallization, that is, the melting of crystals formed during quenching, the melting-recrystallization process, and the coexistence of different crystal morphologies. Two types of crystal morphologies could coexist in samples having a high comonomer content after isothermal crystallization. They were the chain-folded lamellae formed by long ethylene sequences and the bundlelike crystals formed by short ethylene sequences. The coexistence phenomenon was further proved by the AFM morphological observation.