93 resultados para Thermal expansion coefficient
Resumo:
For steady-state heat conduction a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodicity of the heat flux fields. Then by combining with the eigenfunction expansion of complex potential which satisfies the fiber-matrix interface conditions, an eigenfunction expansion-variational method (EEVM) based on a unit cell is developed. The effective transverse thermal conductivities of doubly-periodic fiber reinforced composites are calculated, and the first-order approximation formula for the square and hexagonal arrays is presented,which is convenient for engineering application. The numerical results show a good convergency of the presented method, even through the fiber volume fraction is relatively high. Comparisons with the existing analytical and experimental results are made to demonstrate the accuracy and validity of the first-order approximation formula for the hexagonal array.
Resumo:
The perturbation expansion method is used to find the effective thermal conductivity of graded nonlinear composites having thermal contact resistance on the inclusion surface. As an example, we have studied the graded composites with cylindrical inclusions immersed in a homogeneous matrix. The thermal conductivity of the cylindrical inclusion is assumed to have a power-law profile of the radial distance r measured from its origin. For weakly nonlinear constitutive relations between the heat flow density q and the temperature field T, namely, q = -mu del T - chi vertical bar del T vertical bar(2) del T, in both the inclusion and the matrix regions, we have derived the temperature distributions using the perturbation expansion method. A nonlinear effective medium approximation of graded composites is proposed to estimate the effective linear and nonlinear thermal conductivities. by considering the temperature singularity on the inclusion surface due to the heat contact resistance. (c) 2006 Elsevier B.V. All rights reserved.