95 resultados para Tail Shape


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An N-shape thermal front in the western South Yellow Sea (YS) in winter was detected using Advanced Very High Resolution Radiation (AVHRR) Sea Surface Temperature data and in-situ observations with a merged front-detecting method. The front, which exists from late October through early March, consists of western and eastern wings extending roughly along the northeast-southwest isobaths with a southeastward middle segment across the 20-50 m isobaths. There are north and south inflexions connecting the middle segment with the western and eastern wings, respectively. The middle segment gradually moves southwestward from November through February with its length increasing from 62 km to 107 km and the southern inflexion moving from 36.2A degrees N to 35.3A degrees N. A cold tongue is found to coexist with the N-shape front, and is carried by the coastal jet penetrating southward from the tip of the Shandong Peninsula into the western South YS as revealed by a numerical simulation. After departing from the coast, the jet flows as an anti-cyclonic recirculation below 10 m depth, trapping warmer water originally carried by the compensating Yellow Sea Warm Current (YSWC). A northwestward flowing branch of the YSWC is also found on the lowest level south of the front. The N-shape front initially forms between the cold tongue and warm water involved in the subsurface anti-cyclonical recirculation and extends upwards to the surface through vertical advection and mixing. Correlation analyses reveal that northerly and easterly winds tend to be favorable to the formation and extension of the N-shape front probably through strengthening of the coastal jet and shifting the YSWC pathway eastward, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two marine urostylid ciliates, Holosticha hamulata n. sp. and Holosticha heterofoissneri Hu and Song, 2001, were investigated using live observation and protargol impregnation. Both species were isolated from Korean intertidal sediments of the Yellow Sea. Holosticha hamulata measures about 150 x 25 pro in vivo, and is characterized by a tripartite body shape with a narrow head, an inflated trunk, and a tail that distally projects ventrally forming a hook-like structure. It is the characteristic body shape that distinguishes H. hamulata distinctly from congeners. Holosticha hamulata differs from H. heterofoissneri, possibly the nearest relative, also by the location of the contractile vacuole (ahead of mid-body versus near posterior body third) and the configuration of the macronucleus (on average, 33 scattered nodules assuming a Y-shape versus 17 nodules that may form a U shape). The average number of the macronuclear nodules is a pronounced feature showing great consistency in populations of each species. However, their arrangement is variable in H. heterofoissneri where the nodules are basically scattered or connected by fine fibers forming an elongate U-shape. The location of the contractile vacuole as a taxonomic feature is discussed and a dichotomous key to the species of Holosticha sensu stricto is provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文通过形状约束方程(组)与一般主动轮廓模型结合,将目标形状与主动轮廓模型融合到统一能量泛函模型中,提出了一种形状保持主动轮廓模型即曲线在演化过程中保持为某一类特定形状。模型通过参数化水平集函数的零水平集控制演化曲线形状,不仅达到了分割即目标的目的,而且能够给出特定目标的定量描述。根据形状保持主动轮廓模型,建立了一个用于椭圆状目标检测的统一能量泛函模型,导出了相应的Euler-Lagrange常微分方程并用水平集方法实现了椭圆状目标检测。此模型可以应用于眼底乳头分割,虹膜检测及相机标定。实验结果表明,此模型不仅能够准确的检测出给定图像中的椭圆状目标,而且有很强的抗噪、抗变形及遮挡性能。