98 resultados para Summer season
Resumo:
Understanding the effects of dietary composition on methane (CH4) production of sheep can help us to understand grassland degradation resulting in an increase of CH4 emission from ruminant livestock and its resulting significance affecting CH4 source/sink in the grazing ecosystem. The objective of this study was to investigate the effect of forage composition in the diet of sheep in July and August on CH4 production by sheep in the Inner Mongolia steppe. The four diet treatments were: (1) Leymus chinensis and Cleistogenes squarrosa (LC), (2) Leymus chinensis, Cleistogenes squarrosa and concentrate supplementation (LCC), (3) Artemisia frigida and Cleistogenes squarrosa (AC), and (4) Artemisia frigida, Cleistogenes squarrosa and concentrate supplementation (ACC). CH4 production was significantly lower in July than in August (31.4 and 36.2 g per sheep-unit per day, respectively). The daily average CH4 production per unit of digestive dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) increased by 10.9, 11.2 and 42.1% for the AC diet compared with the LC diet, respectively. Although concentrate supplementation in both the AC and LC diets increased total CH4 production per sheep per day, it improved sheep productivity and decreased CH4 production by 14.8, 12.5 and 14.8% per unit of DM, OM and NDF digested by the sheep, respectively. Our results suggested that in degraded grassland CH4 emission from sheep was increased and concentrate supplementation increased diet use efficiency. Sheep-grazing ecosystem seems to be a source of CH4 when the stocking rate is over 0.5 sheep-units ha(-1) during the growing season in the Inner Mongolia steppe.
Resumo:
Forty-five male yaks (born April 2001) were studied to determine how seasonal changes on the Qinghai-Tibetan plateau affected BW and body composition. Thirty yaks were weighed monthly from birth to 26 mo of age to determine seasonal changes in BW. The remaining 15 yaks were allocated randomly to five groups (three yaks per group), designated for slaughter at 13, 15, 18, 22, and 25 mo to measure seasonal effects on body chemical composition. All yaks were grazed on the alpine-meadow grassland of the plateau without any supplementation. All BW and body composition data were calculated on an individual basis. Body weight and body composition data were both compared across seven growth periods spanning 2 yr and defined by season. From April (birth) to December 2001 of the first growing season, yak BW increased (P < 0.01); however, during the subsequent cold season (December 2001 to May 2002), BW decreased (P < 0.01). The second growing season ran from May 2002 (13 mo of age) to October 2002 (18 mo of age), and the second live weight-loss season ran from October 2002 until May 2003. The weight loss experienced by yaks during the first weight loss season was 25.64% of the total weight gain in the first growing season. The weight loss experienced by yaks during the second weight-loss season was 29.73% of the total weight gain in the second growing season. Energy retention in the second growing season was 291.07 MJ, 50.8% of which was consumed during the subsequent cold season. Energy accumulation in the summer (from May to July) and fall (from July to October) of the second growing season did not differ (5.01 and 6.30 MJ/kg of EBW gain, respectively; P = 0.63). The energy mobilized during the second winter (from October 2002 to February 2003) was 16.49 MJ/kg of EBW, and in the second spring (from February to May 2003), it was 9.06 MJ/kg of EBW. These data suggest that the decrease in grazing yak BW during the first cold season is much less than during the second cold season, and that the energy content per unit of BW mobilized is greater (P = 0.02) in winter than in spring. Results from this study demonstrate highly efficient compensatory growth in grazing yaks following the first weight loss period during the first cold season. This benefit could be exploited by herders to improve yak production. Yaks may have developed a type of self-protection mechanism to overcome the long cold seasons in the Qinghai-Tibetan plateau.
Resumo:
The present study was conducted to determine the effects of supplementary feeds, oat hay (OH), highland barley straw (HBS) and multi-nutrient blocks supplementation (UMMB) on reducing liveweight losses of both yak cows and calves grazed on low quality pastures during cold season. The trials of OH and HBS supplementation were conducted by using completely random design on 104 yak cows between 6 and 12 years of age as the following treatments: pure grazing (41 animals, body weight 230 67 kg) as control (CK); grazing+1.5 kg DM of OH per head daily (30 animals, body weight 216 28 kg); gazing. 1.5 kg DM of HBS per head daily (33 animals, body weight 221 34 kg). The trial of UMMB was conducted on three types of yaks, 1-year calves (8-12 months old, body weight 61.1 6.9 kg), 2-year calves (18-24 months old, 98.0 11.3 kg) and yak cows (164.5 27.1 (S.D.) kg) with 20 animals in control group (CK) and 20 animals in supplement group for each type by using completely random design as the following treatments: pure grazing for CK group; grazing+ 150, 250 and 500 g UMMB per day averagely for 1-year calf, 2-year calf and cow at night. The results indicate that the animals supplemented with oat hay received body weight gain (32 20.7 g day(-1)), while those supplemented with highland barley straw still suffered from body weight loss (-56.7 39.3 a day(-1)); UMMB supplementation can decrease the body weight loss by 109.7%, 86.6% and 63.4% for the 1-year calves, 2-year calves and yak cows, respectively, as compared with pure grazing. Around US$1.60 output can be achieved on the basis of US$1 input for UMMB supplementation in the farming systems of the 1-year calves, 2-year calves and yak cows, while US$1 input can produce US$1.55 and 1.14 output for OH and FIBS supplementations, respectively, in yak cows' farming system. It can be preliminary concluded that UMMB supplementation was the most economic way to alleviate body weight loss of grazing yaks over cold season, and the higher productive returns were obtained from OH supplementation for grazing yak cows during winter/spring months. © 2004 Elsevier B.V All rights reserved.
Resumo:
As a key issue of ionospheric weather study, systemic studies on ionospheric storms can not only further improve our understanding of the response of the ionosphere to solar and geomagnetic disturbances, but also help us to reveal the chemical, dynamic and electro-dynamic mechanisms during storms. Empirical modelling for regional ionospheric storm is also very useful, because it can provide us with tools and references for the forecasting and further practical application of ionospheric activity. In this thesis, we focus on describing and forecasting of ionospheric storms at middle and low latitudes. The main points of my investigations are listed as follows. (1) By using magnetic storms during the period over 50 years, the dependence of the type, onset time and time delay of the ionospheric storms on magnetic latitude, season and local time at middle and low latitudes in the East-Asian sector are studied. The results show that the occurrences of the types of ionospheric disturbances differ in latitude and season. The onset of the ionospheric storms depends on local time. At middle latitudes, most negative phase onsets are within the local time interval from night to early morning, and they rarely occurred in the local noon and afternoon sectors. At low latitudes, positive phases commence most frequently in the daytime sector as well as pre-midnight sector. The average time delays for both the positive and negative ionospheric storms increase with descending latitudes. The time delay has significant dependence on the local time of main phase onset (MPO). The time delay of positive response is shorter for daytime MPO and longer for night-time MPO, whereas the opposite applies for negative response. (2) Based on some previous researches, a primary empirical model for mid-latitude ionospheric disturbance is set up. By fitting to the observed data, we get a high accuracy with a mean RMSE of only 12-14% in summer and equinox. The model output has been compared with the output of STORM model, and the results show that, our model is much better than STORM in summer and a little better for some mid-latitude stations at equinox. Especially, for the type of two-step geomagnetic storm, our model can present twice descending of foF2 very well. In addition, our model can forecast positive ionospheric storms.
Resumo:
Stable isotope compositions of land snail shells have a great potential as an indicator of paleoclimatic and paleoenvironmental changes. However, some key issues, such as the relationship of carbon isotope between snail food and local vegetation, and the uncertainty of the dominant factors about snail body fluid changes in oxygen isotope composition, remain less well known, strongly limiting shell isotopic application. In this study, we measure the stable isotope compositions on the shells of both live snails and fossils collected from the Chinese Loess Plateau and a loess sequence at Mangshan, Xingyang, respectively. Based on the analyses, the association of the stable isotope compositions of land snail shells with their growing seasons is investigated. In addition, the climatic and environmental significances of isotopic differences among several snail species are discussed. The main results and conclusions are presented as follows: 1. δ18O values for the shell lip samples of Bradybaena ravida redfieldi range from -6.79‰ to -1.92‰, and parallels to the monthly changes of local rain water δ18O, temperature and humidity. The compatibility of shell lip δ18O with monthly modeled shell δ18O indicates that the shell lip δ18O changes are mainly resulted from the 18O variations of rain-water. The shells of a land snail growing in spring could be enriched in 18O, and those growing in summer depleted in 18O. 2. Carbon isotope compositions of snail shells are controlled by their diet, which is affected by the relative proportion of C3 to C4. There are some differences in carbon isotopic compositions among different snail species, especially between P. orphana and V. tenera or P. aeoli. Shell δ13C for P. orphana is the most positive with an average of -5.88 ± 2.54 ‰. The C4 plant fraction of the food for “cold-aridiphilous” taxa, P. aeoli and V. tenera, is distinctly lower than that for “thermo-humidiphilous” taxa, P. orphana, indicating that summer is likely to be the main active season of P. orphana and spring of P. aeoli and V. tenera. Therefore, some discrepancy of carbon isotopic compositions among different species may be related to snail active season. 3. δ13C values among different species have a certain degree of positive correlation, which may be influenced by local vegetation ecosystem. δ13C value of the snail shells (especially P. orphana) shows an eastward increasing trend and consists with the variations of C4 plants biomass in Loess Plateau. The result shows that the carbon isotope in local vegetation ecosystem is one of the main factors influencing δ13C values of snail food. Therefore, both carbon isotopes of local vegetation ecosystem and snail active season contribute to the carbon isotopic differences among different snail species and in different areas. 4. δ13C values of living snail shells and soil organic matter have a positive correlation with each other, which further supports the view that carbon isotope in local vegetation ecosystem is one of the main factors influencing δ13C values of snail food. However, the range of δ13C values of snail food for various species in response to carbon isotope in local vegetation ecosystem is different. It is suggested that 13C enrichment of snail shells relative to local vegetation ecosystem has a potential to indicate snail active season and the degree of climate temperature and humidity. 5. There is a significant negative correlation between carbon and oxygen isotopic compositions of living snail shells in Loess Plateau. This result further supports that snail active season can be inferred based on the shell carbon and oxygen isotopic compositions. Moreover, there are some positive correlations between mean annual temperature and differences of shell δ13C values ( 13CV. tenera-P. orphana) and that of δ18O values ( 18OV. tenera-P. orphana) for P. orphana, a typical “thermo-humidiphilous” taxa, and V. tenera, a typical “cold-aridiphilous” taxa, respectively. It shows that 13CV. tenera-P. orphana and 18OV. tenera-P. orphana may have a potential to indicate mean annual temperature or the length of biological growing season. 6. Stable isotopes of land snail shell in the Mangshan loess sequence show that the shell δ18O value of “cold-aridiphilous” taxa V. tenera is more positive than “thermo-humidiphilous” taxa P. orphana and δ13C value of the former is more negative than the latter. In addition, the shell δ18O value of V. tenera varies significantly in different period. During the last glacial maximum, its δ18O value with an average of -7.89 ‰ is more negative than that (-5.88 ‰) from the last deglaciation to the early Holocene. This phenomenon indicates that its growing season during different period is significantly different. It tends to grow in summer in last glacial maximum. With climate warming, it prefers growing in spring with relatively low temperature. While the shell δ18O value of P. orphana varies in a little range, which shows that its activity season is shorter and mainly in summer. These results further support that the change of the snail growing season is one of the main factors of differences of carbon isotopic compositions among different snail species and varies with time. Furthermore, it is consistent that changes in magnetic susceptibility and trend of differences of shell δ18O values and δ13C values respectively between the two snail fossils. It is further testified that 13CV. tenera-P. orphana and 18OV. tenera-P. orphana may have a potential to indicate mean annual temperature or the length of biological growing season.
Resumo:
Because of the high resolution, stalagmite laminae can play an important role in the paleoclimate reconstructions. However, few investigations for the formation mechanisms of stalagmite lamilae have been done. Based on two-year observation on calcite growth rate at the drip sites, three-year monitoring of hydrodynamics, physics and chemistry of drip waters at different drip sites and the surrounding environments inside and outside the Beijing Shihua Cave, the seasonal variations of calcite growth rate are revealed and the results can be concluded as follows: 1. The drip waters inside the Cave are mostly sourced from the summer rain, and its minimal response-time to the atmospheric precipitation is less than one day. There are three types of response relationships between the precipitation and the drip rate variations: rapid response type, time-lag response type and stable response type. For rapid response type, the drip discharge is recharged through the flow routes along intensive fractures and interconnectivities; for time-lag response type, the drip discharge is recharged by double-porosity system composed of a high conductivity, low storage capability conduit network and a low-conductivity high-storage capability rock matrix under variable boundary conditions; for stable response type, the drip discharge is mainly recharged by seepage flow and base flow. 2. The observation shows that, inside the Cave, the growth rate of calcite is generally lower in rainy seasons and higher in dry seasons. During the rainy seasons, the drip water is characterized by a lower pH value, higher [Ca2+], [Mg2+], [SO42-] and electrical conductivity (EC) values. According to the calculations of saturation index of calcite (SIc), pCO2 of the drip water, as well as the synthetical analysis of other possible factors, the calcite growth rate is found to be principally influenced by the drip water saturation index of calcite (SIc). And the drip rate and pCO2 in the drip water and in the cave air play the secondly important roles in this process. The recharge mode of heavy rainfall events in the rainy seasons should probably be the main driving force that controls the physicochemical properties and calcite sediment of the drip waters. The abrupt decrease of sedimentary rate and the sharp peak of DOC in drip water in the rainy season probably forms the thin opaque (luminescent under ultraviolet radiation) layers observed in the stalagmites, whereas the relatively higher sedimentary rate in the dry seasons may be responsible for the thicker bright layers. The investigation elucidated here preliminarily reveals the formation mechanism of the stalagmite laminae in Beijing Shihua Cave.