155 resultados para Spin-orbit coupling


Relevância:

80.00% 80.00%

Publicador:

Resumo:

X-ray photoelectron spectra of some bioinorganic complexes of La, Pr, Nd, Sm, and Gd with N-acetylvaline have-been measured. The complex formation does not give any detectable influence on the binding energy of the N 1s peak in the amino group, but has some appreciable effect on the binding energy of the C 1s peak and the O 1s peak in the carboxyl and carbonyl group of the biological ligand. The spin-orbit splitting between the 3d5/2 and 3d3/2 core level of the rare earth ion in these bioinorganic complexes also becomes slightly larger than that of the free rare earth atom due to the effect of the crystal field from the biological ligands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Surface structure of the glassy carbon surface modified with cobalt tetraphenyl-porphyrin (CoTPP) by thermal-treatment has been studied by XPS, DTA and TG. During the thermal treatment a bond can be formed between the glassy carbon surface and TPP. Therefore the stability of electrode for the catalysis of dioxygen reduction is improved. Upon thermal treatment at 600 degrees C, FWHM of Co(2p(2/2)) is broadened, the reason is due to overlapping of peaks of multiple states, the spin orbit separation between Co (2p(1/2)) and Co (2p(3/2)) increases to 15.5-16.3eV, which indicated a change from low spin divalent states, the kinetic energy of Co L3VV Auger line and Auger parameter also increase. These changes of central cobalt ion provide a suitable redox potential for Co(III)/Co(II) which is related to the activity for catalysis of dioxygen reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photodissociation of CH2BrCH2Cl at 266 nm has been investigated on the universal crossed molecular beam machine. The primary dissociation step leads exclusively to the formation of CH2CH2Cl radicals and Br atoms in the electronic ground state as well as in the spin-orbit excited state, with a branching ratio 2 +/- 1:8 +/- 1. Photofragment total c.m. translational energy distribution P(E-t) has been obtained and about 64% of the available energy is partitioned into translational energy for Br channel and about 28.5% of the available energy is partitioned into translational energy for Br* channel. The anisotropy parameters are determined to be beta(Br*) = 0.8 +/- 0.2 and beta(Br) = -0.6 +/- 0.2, respectively. Some CH2CH2Cl radicals with large internal excitation (corresponding to formation of ground state Br channel) may undergo secondary dissociation to form CH2CH2 +/- Cl. The experimental results are discussed in terms of a model that involves the initial excitation of two repulsive electronic states: one from an parallel transition to the (3)Q(0) state, and the other from a perpendicular transition to the (3)Q(1), (1)Q states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intermolecular ferromagnetic interactions in two stacking models for the dimer of high spin molecules are investigated by means of AM1-CI approach. It is shown that the stability of high spin ground state versus low spin state can be simply traced back to the number and the extent of atoms with reversed signs of pi-spin density in neighboring molecules coupled to each other in shortest distance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, GdFeCo/DyFeCo exchange-coupled double-layer films used for center aperture type magnetically induced super resolution were investigated through experiments and theoretical calculation. The samples were prepared by magnetron sputtering method. The polar Kerr effect was measured to prove the spin reorientation of the readout layer. Theoretical study of magnetization profiles was performed on the basis of the mean-field theory and the continuum model. The theoretical results showed that the magnetization orientation of the readout layer changed gradually from in-plane to out-of-plane with the rise of the temperature. Theoretical analysis explained the experimental results successfully. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The energy dispersion of an electron in a double quantum wire with a diluted magnetic semiconductor barrier in between is calculated. An external magnetic field modifies significantly the energy dispersion of the electron which is different for the two spin states. The conductance exhibits many interesting peaks and dips which are directly related to the energy dispersions of the different electron spin states. These phenomena are attributed to the interwell coupling which can be tuned by the magnetic field due to the s-d exchange interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal entanglement in a two-qubit Spin-1 system with two spins coupled by exchange interaction is investigated in terms of the measure of entanglement called "negativity". It is found that the thermal entanglement exists and is symmetric for both ferromagnetic and antiferromagnetic exchange couplings. Moreover, the critical temperature at which the negativity vanishes increases with the exchange coupling constant J. From the temperature and magnetic field dependences we demonstrate that the temperature and the magnetic field can affect the feature of the thermal entanglement significantly. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the Loschmidt echo (LE) of a coupled system consisting of a central spin and its surrounding environment described by a general XY spin-chain model. The quantum dynamics of the LE is shown to be remarkably influenced by the quantum criticality of the spin chain. In particular, the decaying behavior of the LE is found to be controlled by the anisotropy parameter of the spin chain. Furthermore, we show that due to the coupling to the spin chain, the ground-state Berry phase for the central spin becomes nonanalytical and its derivative with respect to the magnetic parameter lambda in spin chain diverges along the critical line lambda=1, which suggests an alternative measurement of the quantum criticality of the spin chain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find that the Rashba spin splitting is intrinsically a nonlinear function of the momentum, and the linear Rashba model may overestimate it significantly, especially in narrow-gap semiconductors. A nonlinear Rashba model is proposed, which is in good agreement with the numerical results from the eight-band k center dot p theory. Using this model, we find pronounced suppression of the D'yakonov-Perel' spin relaxation rate at large electron densities, and a nonmonotonic dependence of the resonance peak position of the electron spin lifetime on the electron density in [111]-oriented quantum wells, both in qualitative disagreement with the predictions of the linear Rashba model.