155 resultados para Silver.
Resumo:
In this paper, we for the first time report a polyol method for large-scale synthesis of rectangular silver nanorods in the presence of directing agent and seeds. This method has some clear advantages including simplicity, high quality, and ease of scaleup. Silver nanowires or silver nanorods with a submicrometer diameter could also be facilely prepared when the reaction parameters are slightly changed. Furthermore, a liquid-liquid assembly strategy has been employed to construct uniform rectangular silver nanorod arrays on a solid substrate which could be used as surface-enhanced Raman scattering (SERS) substrates with high SERS activity, stability, and reproducibility. It is found that the SERS spectra obtained from the probe molecules with the different concentrations show different SERS intensifies. As the concentration of 4-aminothiophenol (4-ATP) or rhodamine 6G (R6G) increases, the SERS intensities progressively increase. The enhancement factor for 4-ATP and R6G should be as large as 5.06 x 10(4) or much larger than the value of 5.06 x 10(8), respectively.
Resumo:
We describe herein the preparation of silver nanoparticles (AgNPs) using nucleobase adenine as protecting agent through the in situ chemical reduction of AgNO3 with NaBH4 in an aqueous medium at room temperature. As-prepared AgNPs were characterized by UV-visible spectra, transmission electron microscopy and x-ray photoelectron spectroscopy. All these data confirmed the formation of AgNPs. On the basis of electrostatic interactions between as-prepared AgNPs and anionic polyelectrolyte poly(sodium 4-styrenesulfonate) (PSS), we successfully fabricated (PSS/AgNP)n (n = 0-9) multilayers on a 3-mercaptopropyltrimethoxysilane/AgNP functionalized indium tin oxide (ITO) substrate via the layer-by-layer self-assembly technique and characterized as-formed multilayers with UV-visible spectra. Furthermore, these ITO substrates coated with multilayers of different thickness were investigated as surface-enhanced Raman scattering (SERS)-active substrates using p-aminothiophenol as a probe molecule, implying that these multilayers substrates may be promising for a new type of SERS-active substrate.
Resumo:
In this paper. we demonstrate an clectrochemiluminescence (ECL) enhancement of tris(2,2-bipyridyl)rutheniuin(II) (Ru(bpy)(3)(2+)) by the addition of silver(l) ions. The maximum enhancement factor of about 5 was obtained on a glassy carbon electrode in the absence of co-reactant. The enhancement of ECL intensity was possibly attributed to the unique catalytic activity of Ag+ for reactions between Ru(bpy)(3)(3+) with OR The higher enhancement was observed in phosphate buffer solutions compared with that from borate buffer solutions. This resulted from the fact that formation of nanoparticles with large surface area in the phosphate buffer solution exhibited high catalytic activity. The amount of Ag+, solution pH and working electrode materials played important roles for the ECL enhancement. We also studied the effects of Ag+ on Ru(bpy)(3)(2+)/tripropylamine and Ru(bpy)(3)(2+)/C2O42- ECL systems.
Resumo:
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions.
Resumo:
In this paper, we report a simple method of fabricating silver and gold nanostructures at the air - water interface, which can be spontaneously assembled through the reduction of AgNO3 and HAuCl4 with ultraviolet (UV) irradiation in the presence of polyacrylic acid (PAA), respectively. It was found that the building blocks in the silver nanostructure are mainly interwoven silver nanofilaments, while those of the gold nanostructure are mainly different sizes of gold nanoparticles and some truncated gold nanoplates, and even coalescence into networks. At the air - water interface, these silver and gold nanostructures can be easily transferred onto the surface of indium tin oxide (ITO) slides and used for electrochemical measurements. After a replacement reaction with H2PdCl4, the silver nanostructure is transformed into a Ag - Pd bimetallic nanostructure, with good electrocatalytic activity for O-2 reduction. The gold nanostructure can also show high electrocatalytic activity to the oxidation of nitric oxide (NO) with a detection limit of about 10 mu M NaNO2 at S/N = 3.
Resumo:
Silver nanoplates with controlled size are synthesized by seed-mediated growth approach in the presence of citrate. These nanoplates are single crystal with a mean size of 25-1073 nm and thickness of ca. 10-22 nm. The optical in-plane dipole plasmon resonance bands of these plates can be tuned from 458 to 2400 nm. Control experiments have been explored for a more thorough understanding of the growth mechanism. It was found that the additional citrate ions in the growth solution were the key to controlling the aspect ratio of silver nanoplates. Similar to the surfactants or polymers in the solution, citrate ions could be likewise dynamically adsorbed on the growing silver nanoparticles and promote the two-dimensional growth of silver nanoparticles under certain conditions. Small silver seeds were also found to play an important role in the formation of large thin silver nanoplates, although the structure of them was not clear yet and needed further investigations.
Resumo:
Novel silver-gold bimetallic nanostructures were prepared by seeding with silver nanoplates in the absence of any surfactants. During the synthesis process, it was found that the frameworks of silver nanoplates were normally kept though the basal plane of silver nanoplates became rugged. The real morphology of these nanostructures depended on the molar ratio of gold ions to the seed particles. When the molar ratio of gold ions to silver atoms increased from 0.5 to 4, porous or branched silver-gold bimetallic nanostructures could be made. The growth mechanism was qualitatively discussed based on template-engaged replacement reactions and seed-mediated deposition reactions. Due to the unusual structures, they exhibited interesting optical properties. Moreover, they were shown to be an active substrate for surface-enhanced Raman scattering measurements.
Resumo:
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4-aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS-based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80-100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 x 10(4) relative to silver colloid, which might have resulted from the presence of 'hot-spots' at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 x 10(7) by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface.
Resumo:
In this paper, the fabrication of an active surf ace-enhanced Raman scattering (SERS) substrate by self-assembled silver nanoparticles on a monolayer of 4-aminophenyl-group-modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4-aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping-mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p-aminothiophenol (p-ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10(-9) m. This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon-based materials for SERS with high sensitivity.
Resumo:
We fabricated efficient top-emitting organic light-emitting diodes (OLEDs) with silver (Ag) as an anode and samarium (Sm) as a semi-transparent cathode. The hole-injection barrier at the Ag anode/hole transporter interface is reduced by inserting a buffer layer of vanadium oxide (V2O5) between them. The ultraviolet photoelectron spectroscopy analysis shows that the hole-injection barrier is reduced by 0.5 eV. Both the V2O5 thickness and the organic layer thickness are optimized. The optimized device achieves a maximum current efficiency of 5.46 cd A(-1) and a power efficiency of 3.90 lm W-1, respectively.
Resumo:
Organic-inorganic hybrids containing luminescent lanthanide complex Eu(tta)(3)Phen (tta = thenoyltrifluoroaceton, phen = 1,10-phenanthroline) and silver nanoparticles have been prepared via mixing rare earth complex and nanoparticles with the precursors of di-ureasil using a sol-gel process. The obtained hybrid materials with transparent and elastomeric features were characterized by transmission electron microscope, solid-state Si-29 magic-angle spinning NMR spectra, diffuse reflectance, UV-visible absorption and photoluminescence spectroscopies. The effect of the silver nanoparticles on the luminescence properties was investigated. The experimental results showed that the luminescence intensity of the Eu(tta)(3)phen complex could be enhanced by less than ca. 9.5 nM of silver nanoparticles with the average diameter of 4 nm, and reached its maximum at the concentration of ca. 3.6 nM. Further increasing the concentration of the silver nanoparticles (> 9.5 nM) made the luminescence quenched. The enchancement and quench mechnism was discussed.
Resumo:
The poly(vinyl alcohol)/ poly(N-vinyl pyrrolidone) (PVA-PVP) hydrogels containing silver nanoparticles were prepared by repeated freezing-thawing treatment. The silver content in the solid composition was in the range of 0.1-1.0 wt %, the silver particle size was from 20 to 100 nm, and the weight ratio of PVA to PVP was 70 : 30. The influence of silver nanoparticles on the properties of PVA-PVP matrix was investigated by differential scanning calorimeter, infrared spectroscopy and UV-vis spectroscopy, using PVA-PVP films containing silver particles as a model. The morphology of freeze-dried PVA-PVP hydrogel matrix and dispersion of the silver nanoparticles in the matrix was examined by scanning electron microscopy. It was found that a three-dimensional structure was formed during the process of freezing-thawing treatment and no serious aggregation of the silver nanoparticles occurred. Water absorption properties, release of silver ions from the hydrogels and the antibacterial effects of the hydrogels against Escherichia coli and Staphylococcus aureus were examined too. It was proved that the nanosilver-containing hydrogels had an excellent antibacterial ability.