249 resultados para Silver addition
Resumo:
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.
Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing
Resumo:
In-fibre chemical and optical sensors based on silver nanocrystals modified microstructured polymer optical fibres (MPOFs) were demonstrated. The silver nanocrystals modified MPOFs were formed by direct chemical reduction of silver ammonia complex ions on the templates of array holes in the microstructure polymer optical fibres. The nanotube-like and nanoisland-like Ag-modified MPOFs could be obtained by adjusting the conditions of Ag-formation in the air holes of MPOFs. SEM images showed that the higher concentration of the reaction solution (silver ammonia 0.5 mol/L, glucose 0.25 mol/L), gave rise to a tubular silver layer in MPOF, while the lower concentration (silver ammonia 0.1 M, glucose 0.05 M) produced an island-like Ag nanocrystal modified MPOF. The tubular Ag-MPOF composite fibre was conductive and could be directly used as array electrodes in electrochemical analyses. It displayed high electrochemical activity on sensing nitrate or nitrite ions. The enhanced fluorescence of dye molecules was observed when the island-like Ag-modified MPOF was inserted into a fluorescent dye solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Large-scale uniform Ag microtubes with high length diameter ratios have been first successfully synthesized by a facile approach, using low-cost super fine glass fibers as templates. The samples were characterized by SEM and XRD. The investigations showed that calcining or adding of PEG-1000 and alcohol could greatly improve the mechanical strength of the sample. Especially the products exhibited favorable catalytic properties during the degradation of Rhodamine B by NaBH4. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Upon UV-irradiation at 254 nm, the photoluminescence of silver atoms in zeolite-Y decreases, meanwhile an absorption band shows up around 840 nm. By photostimulation at 840 nm, fluorescence of silver atoms is detected, which is called photostimulated luminescence, and the photoluminescence of silver atoms is increased slightly. These phenomena are attributed to the charge-transfer interaction between the zeolite framework and the entrapped silver atoms. (C) 1997 Published by Elsevier Science B.V.
Resumo:
An electrically bistable device has been fabricated using nanocomposite films consisting of silver nanoparticles and a semiconducting polymer by a simple spin-coating method. The current-voltage characteristics of the as-fabricated devices exhibit an obvious electrical bistability and negative differential resistance effect. The current ratio between the high-conducting state and low-conducting state can reach more than 103 at room temperature. The electrical bistability of the device is attributed to the electric-filed-induced charge transfer between the silver nanoparticles and the polymer, and the negative differential resistance behavior is related to the charge trapping in the silver nanoparticles. The results open up a simple approach to fabricate high quality electrically bistable devices by doping metal nanoparticles into polymer.