133 resultados para SYSTOLIC FUNCTION
Resumo:
A matrix analysis for free-space switching networks, such as perfect shuffle-exchange omega, crossover and Banyan is presented. On the basis of matrix analysis, the equivalence of these three switching networks and the route selection between input and output ports are simply explained. Furthermore, an optical crossover switching network, where MQW SEED arrays are used as electrically addressed four-function interchange nodes, is described and the optical crossover interconnection of 64 x 64, and high-speed four-function, interchange nodes is demonstrated in the experiment.
Resumo:
The usual application of the Lei-Ting balance equation method for treating electron transport problems makes use of a Fermi distribution function for the electron motion relative to the center of mass. It is pointed out that this presumes the existence of a moving frame of reference that is dynamically equivalent to the rest frame of reference, and this is only true for electrons with a constant effective mass. The method is thus inapplicable to problems where electrons governed by a general energy-band dispersion E(k) are important (such as in miniband conduction). It is demonstrated that this difficulty can be overcome by introducing a distribution function for a drifting electron gas by maximizing the entropy subject to a prescribed average drift velocity. The distribution function reduces directly to the usual Fermi distribution for electron motion relative to the center of mass in the special case of E(k)=($) over bar h(2)\k\(2)/2m*. This maximum entropy treatment of a drifting electron gas provides a physically more direct as well as a more general basis for the application of the balance equation method.
Resumo:
The theoretical treatment of magnetic levels formed in the minibands of superlattices under an in-plane magnetic field is discussed. It is found that the results of semiclassical and envelope-function treatments based on miniband structures are in good agreement with the results calculated strictly by the quantum-mechanical method, so long as the critical parameter 2hc/eBL2 is larger than 1. The wave functions obtained are in the nature of superlattice envelope functions, which are over and above the usual effective-mass envelope functions for bulk materials.
Resumo:
To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.
Resumo:
It is rigorously proved that the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field is diagonal with respect to single-particle states in the Landau gauge. The implication of this theorem is briefly discussed.
Resumo:
In a previous Letter [Opt. Lett. 33, 1171 (2008)], we proposed an improved logarithmic phase mask by making modifications to the original one designed by Sherif. However, further studies in another paper [Appl. Opt. 49, 229 (2010)] show that even when the Sherif mask and the improved one are optimized, their corresponding defocused modulation transfer functions (MTFs) are still not stable with respect to focus errors. So, by further modifying their phase profiles, we design another two logarithmic phase masks that exhibit more stable defocused MTF. However, with the defocus-induced phase effect considered, we find that the performance of the two masks proposed in this Letter is better than the Sherif mask, but worse than our previously proposed phase mask, according to the Hilbert space angle. (C) 2010 Optical Society of America
Resumo:
Wavefront coding can be used to extend the depth of field of incoherent imaging systems and is a powerful system-level technique. In order to assess the performance of a wavefront-coded imaging system, defocused optical transfer function (OTF) is the metric frequently used. Unfortunately, to the best of our knowledge, among all types of phase masks, it is usually difficult to obtain the analytical OTF except the cubic one. Although numerical computation seems good enough for performance evaluation, the approximate analytical OTF is still indispensable because it can reflect the relationship between mask parameters and system frequency response in a clearer way. Thus, a method is proposed to derive the approximate analytical OTF for two-dimensional rectangularly separable phase masks. The analytical results are well consistent with the direct numerical computations, but the proposed method can be accepted only from engineering point of view and needs rigorous proof in future. (c) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3485759]
Resumo:
To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or -ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or -ray with p53 or GFP).Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM2, and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G1-phase cells in C-beam with p53 increased by 8.2%–16.0%, 5.2%–7.0%, and 5.8%–18.9%, respectively, compared with C-beam only, -ray with p53, or p53 only. The accumulation of G2-phase cells in C-beam with p53 increased by 5.7%–8.9% and 8.8%–14.8%, compared with those in -ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%–19.1%, 5.8%–11.7%, and 5.2%–19.2%, respectively, compared with C-beam only, -ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.
Resumo:
The differential cross sections for elastic scattering products of F-17 on Pb-208 have been measured. The angular dispersion plots of ln(d sigma/d theta) versus theta(2) are obtained from the angular distribution of the elastic scattering differential cross sections. Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle. This turning angle can be clarified as nuclear rainbow in classical deflection function. The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.