240 resultados para SYNDIOTACTIC POLYPROPYLENE
Resumo:
In this work, chemical structures and molecular parameters of grafted materials of PP-g-MAH prepared by melt reactive extrusion were studied by using electrospray ionization-mass spectrometer and gel permeation chromatography. It was found that the initial radicals, due to homolitic scission of dicumyl peroxide could be combined with maleic anhydride (MAH) monomers as well as polypropylene (PP) molecular chains. The homopolymerization of MAH cannot occur and the MAH radicals undergo a dismutational reaction under the processing condition (180-190 degreesC). A modified mechanism of melt grafting MAH onto PP has been proposed tentatively on the basis of our experimental results and other experimental findings published in the literature. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A novel graft-like copolymer of syndiotactic polystyrene (sPS) with polybutadiene (PB) was synthesized by polymerization of styrene in a toluene solution of PB using the cyclopentadiene titanium trichloride (CpTiCl3)/methylaluminoxane (MAO) catalytic system. The effect of PB on the crystallization behavior of the copolymer was investigated by differential scanning calorimetry and wide angle X-ray diffraction. Hydrogenation of the sPS/PB copolymer with p-toluenesulfonyl hydrazide afforded a PE-like copolymer.
Resumo:
The interface behavior of polyamide 1010 (PA1010) and polypropylene (PP) was studied. In order to improve their interfacial adhesion, functional PP was prepared by means of grafting glycidyl methacrylate (GMA) on PP main chains and used instead of plain PP. Several technological characterizations were performed here on their interfaces. ESCA was used to confirm that some kind of reaction occurred between end groups of PA1010 and epoxy species of PP-g-GMA. The peel test was adopted to measure interfacial adhesion. It was found that the fracture energy of interfaces between PA1010 and PP-g-GMA was dramatically increased with the content of GMA. Their interfaces were observed as being blurred by using SEM and TEM and a crack that could be seen in the case of the interfaces of the PA1010 and the plain PP disappeared.
Resumo:
The effect of adding diblock copolymer poly(styrene-b-4-vinylpyridine) (P(S-b-4VPy), to immiscible blends of syndiotactic polystyrene (sPS)/thermoplastic polyurethane (TPU) on the morphology, thermal transition, crystalline structure, and rheological and mechanical properties of the blends has been investigated. The diblock copolymer was synthesized by sequential anionic copolymerization and was melt-blended with sPS and TPU. Scanning electron microscopy (SEM) showed that the added block copolymer reduced the domain size of the dispersed phase in the blends. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the extent of compatibility between sPS and TPU affected the crystallization of the sPS in the blends. Tensile strength and elongation at break increased, while the dynamic modulus and complex viscosity decreased with the amount of P(S-b-4VPy) in the blend. The compatibilizing effect of the diblock copolymer is the result of its location at the interface between the sPS and the TPU phases and penetration of the blocks into the: corresponding phases, i.e. the polystyrene block enters the noncrystalline regions of the sPS, and the poly(4-vinylpyridine) block interacts with TPU through intermolecular hydrogen bonding. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Blends of polypropylene (PP) and low density polyethylene (LDPE) have been examined for a series of compositions using differential scanning calorimetry and permanganic etching followed by transmission electron microscopy. Thermal analysis of their melting and recrystallization behaviour suggests two possibilities, either that below 15 wt % PP the blends are fully miscible and that PP only crystallizes after LDPE because of compositional changes in the remaining melt, or else that the PP is separated, but in the form of droplets too small to crystallize at normal temperatures. Microscopic examination of the morphology shows that the latter is the case, but that a fraction of the PP is nevertheless dissolved in the LDPE. (C) 1998 Kluwer Academic Publishers.
Resumo:
The controlling factors for the epitaxial crystallization of high-density polyethylene (HDPE) on highly oriented isotactic polypropylene (iPP) substrates have been studied in detail by means of transmission electron microscopy and electron diffraction. The results obtained in this work indicate that the crystallization process must be considered in the investigation of epitaxial growth of polymers on polymeric substrates, because of the unique morphological and crystallization characteristics of polymers. Crystallization rate has an important effect on the epitaxial crystallization of polymers. Higher rates result in the formation of thicker epitaxial layers. Isothermal crystallization temperature is another factor affecting epitaxial growth of polymers. Lower temperatures are favorable to epitaxial crystallization of polymers. There exists a critical epitaxial temperature at given experimental conditions, above which no epitaxial growth occurs at all. The influence of crystal dimensions of both the substrates and the deposited polymers on epitaxial growth confirms that secondary nucleation is an important controlling factor for the occurrence of epitaxial crystallization in polymers. The requirement satisfying the secondary nucleation criterion is that the substrate crystal dimension in the matching direction must be greater than the crystal thickness of the deposited polymer. Once the requirement of the secondary nucleation is satisfied, subsequent epitaxial growth is based on the lamellar growth habit of the deposited polymer itself. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the morphology of blends of PA1010 and polypropylene (PP) compatibilized with polypropylene grafted with glycidyl methacrylate (PP-g-GMA). It is found that the morphologies are dependent on the content of glycidyl methacrylate in PP-g-GMA and the mixing time. The size of the dispersed PP particles decreases as the content of GMA in the PP-g-GMA increases for binary blends of PA1010 and PP-g-GMA. Similar results are obtained for changing the mixing time. Ternary blends of PA1010, PP, and PP-g-GMA indicate that morphologies depend on the content of glycidyl metyacrylate in the PP-g-GMA and the miscibility of PP and PP-g-GMA. By changing the content of GMA in PP-g-GMA, it was possible to introduce significant changes of morphology. A matrix removal TEM method is used to investigate the interfacial structure of PA1010/PP blends containing PP-g-GMA as a compatibilizer. This technique shows the reaction product between PA1010 and PP-g-GMA to be located at interface as a surrounding layer around domain particles. SEM observation on the interface shows that the adhesion between PA1010 and pure PP is very weak and their interface boundary is sharp. For the samples of PA1010 and PP-g-GMA, it was found that the interface was not so obvious, and the reaction between PA1010 and PP-g-GMA strengthens the interface significantly. (C) 1997 Elsevier Science Ltd.
Resumo:
The contact angles theta of polar liquids on PP-g-AM copolymer (AM content 0.19, 0.26, and 0.37 wt%) were measured. The critical surface tension gamma(c) of PP-g-AM films were evaluated by the Zisman plot (cos theta versus gamma(L)), the Young-Dupre-Good-Girifalco plot (1 + cos theta) versus 1/gamma(L)(0.5), and the log(1 + cos theta) versus log gamma(L) plot. The gamma(L) values estimated by the plot log(1 + cos theta) versus log gamma(L) were smaller than those obtained by the other plots.
Resumo:
This work deals with the effect of compatibilizer on the morphological, thermal, rheological, and mechanical properties of polypropylene/polycarbonate (PP/ PC) blends. The blends, containing between 0 to 30 vol % of polycarbonate and a compatibilizer, were prepared by means of a twin-screw extruder. The compatibilizer was produced by grafting glycidyl methacrylate (GMA) onto polypropylene in the molten state. Blend morphologies were controlled by adding PP-g-GMA as compatibilizer during melt processing, thus changing dispersion and interfacial adhesion of the polycarbonate phase. With PP-g-GMA, volume fractions increased from 2.5 to 20, and much finer dispersions of discrete polycarbonate phase with average domain sizes decreased from 35 to 3 mu m were obtained. The WAXD spectra showed that the crystal structure of neat PP was different from that in blends. The DSC results suggested that the degree of crystallization of PP in blends decreased as PC content and compatibilizer increased. The mechanical properties significantly changed after addition of PP-g-GMA. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, <(M)over bar (n)>, = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) and ion pairs (alpha(p)) decreases, while that of triple ions (alpha(t)) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that alpha(i) and alpha(t) increase and alpha(p) decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55 degrees C, alpha(i) increases while alpha(p) and alpha(t) decrease with increasing temperature; however, when the temperature is higher than 55 degrees C, the reverse is true.
Resumo:
Noncompatibilized and compatibilized blends of nylon 1010/PP blends having five different viscosity ratios were prepared by melt extrusion. Glycidyl methacrylate-grafted-polypropylene (PP-g-GMA) was used as the compatibilizer to enbance the adhesion between the two polymers and to stabilize the blend morphology. The effect of the viscosity ratio on the morphology of nylon 1010/polypropylene blends was investigated, with primary attention to the phase-inversion behavior and the average particle size of the dispersed phase. The relationship between the mechanical properties and the phase-inversion composition was investigated as well. Investigation of the morphology of the blends by microscopy indicated that the smaller the viscosity ratio (eta(PP)/eta(PA)) the smaller was the polypropylene concentration at which the phase inversion took place and polypropylene became the continuous phase. The compatibilizer induced a sharp reduction of particle size, but did not have a major effect on the phase-inversion point. An improvement :in the mechanical properties was found when nylon 1010 provided the matrix phase. (C) 1996 John Wiley & Sons, Inc.
Resumo:
The rheological properties and crystallization characteristics of low ethylene content poly propylene (EPM) with and without Yittrium oxide (Y2O3) as a filler was investigated by cone-plate viscometer and differential scanning calorimetry. Yittrium oxide had a profound effect on the viscosities of the systems. To determine the nonisothermal crystallization rate of the materials, a new estimation method was used. From the results, we can conclude that Y2O3 acts as a nucleating agent, which increased the crystallization rate of the EPM. (C) 1996 John Wiley & Sons, Inc.
Resumo:
For recycling of waste polymers, the degradation behavior of PP was studied with a combination of radiolysis and thermolysis methods. The results revealed that thermal degradation temperature of PP was significantly reduced when PP was irradiated in the presence of a zeolite. The irradiation-induced temperature reduction depended on the zeolite structure and composition, as well as on the morphology of the mixture. Identification of pyrolysis products indicated that, in the absence of zeolite, irradiation resulted only in a change of the product distribution but no formation of new compounds. In the presence of zeolite, however, a series of oxidized products were formed. In addition, the pyrolysis could be performed at a much lower temperature. (C) 1996 Elsevier Science Limited
Resumo:
With the intention of understanding chemical recycling of waste polymers, various kinds of zeolites were used as catalysts in the pyrolysis of polypropylene (PP). The effects of zeolites on the degradation temperature and pyrolyzed products of PP were studied. It was found that the degradation temperature of PP strongly depended on the type of zeolite used and the amount added. One type of HY zeolite (320HOA) was shown to be a very effective catalyst. Pyrolysis products, which were identified by using a coupled gas-chromatograph-mass-spectrometer, were also affected by the addition of zeolites. Some zeolites did not change the structure of the products but narrowed the product distribution to a smaller molecule region, while the HY zeolite led to hydrocarbons concentrated at those containing 4-9 carbons. Furthermore, some new compounds with cyclic structures were found in the presence of the HY zeolite. (C) 1996 Elsevier Science Limited