251 resultados para SIMULTANEOUS BLUE
Resumo:
The ratios R-k1 of k-fold to single ionization of the target atom with simultaneous one-electron capture by the projectile have been measured for 15-480 keV/u (nu(p) = 0.8-4.4 a.u.) collisions of Cq+, Oq+ (q=1-4) with Ar, using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. The present ratios are similar to those for He+ and He2+ ion impact. The energy dependence of R-k1 shows a maximum at a certain energy, E-max. which approximately conforms to the q(1/2)-dependence scaling. For a fixed projectile state, the ratios R-k1 also vary strongly with outgoing reaction channels. The general behavior of the measured data can be qualitatively analyzed by a simple impact-parameter, independent-electron model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5x10(11) ions/cm(2) but becoming dominant when increasing the fluence to 8x10(12) ions/cm(2). Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Gruneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.
Resumo:
ZnO films doped with different contents of indium were prepared by radio frequency sputtering technique. The structural, optical and emission properties of the films were characterized at room temperature using XRD, XPS, UV-vis-NIR and PL techniques. Results showed that the indium was successfully incorporated into the c-axis preferred orientated ZnO films, and the In-doped ZnO films are of over 80% optical transparency in the visible range. Furthermore, a double peak of blue-violet emission with a constant energy interval (similar to 0.17 eV) was observed in the PL spectra of the samples with area ratio of indium chips to the Zn target larger than 2.0%. The blue peak comes from the electron transition from the Zn-i level to the top of the valence band and the violet peak from the In-Zn donor level to the V-Zn level, respectively.