171 resultados para SHELL UTILIZATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperbranched poly(amido amine)s containing vinyl and hydroxyl groups were successfully synthesized via Michael addition polymerization of triacrylamide (TT) and 3-amino-1,2-propanediol (APD) with equal molar ratio in feed. H-1, C-13 and HSQC NMR techniques were used to clarify the structure of hyperbranched polymers and polymerization mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The core-shell structured YNbO4:Eu3+/Tb3+@SiO2 particles were realized by coating the YNbO4:Etr(3+)/Tb3+ phosphors onto the surface of spherical silica via a sol-gel process. The obtained materials were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform IR spectroscopy (FT-IR), photoluminescence (PL) spectra, and cathodoluminescence (CL) spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphiphilic biodegradable star-shaped polymer was conveniently prepared by the Sn(Oct)(2)-catalyzed ring opening polymerization of c-caprolactone (CL) with hyperbranched poly(ester amide) (PEA) as a macroinitiator. Various monomer/initiator ratios were employed to vary the length of the PCL arms. H-1 NMR and FTIR characterizations showed the successful synthesis of star polymer with high initiation efficiency. SEC analysis using triple detectors, RI, light scattering, and viscosity confirmed the controlled manner of polymerization and the star architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe3O4-polylactide (PLA) core-shell nanoparticles were perpared by surface functionalization of Fe3O4 nanoparticles and subsequent surface-initiated ring-opening polymerization of L-lactide. PLA was directly connected onto the magnetic nanoparticles surface through a chemical linkage. Fourier transform infrared (FT-IR) spectra directly provided evidence of the PLA on the surface of the magnetic nanoparticles. Transmission electron microscopy images (TEM) showed that the magnetic nanoparticles were coated by PLA with a 3-nm-thick shell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene-propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field-emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, C-13-NMR, and differential scanning calorimetry measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dextran sulfate (DS)/poly-L-lysine (PLL) microcapsules are fabricated by an in situ coacervation method using DS-doped CaCO3 microparticles as templates. Twinned superstructures or spherical CaCO3 microparticles are produced depending on DS concentration in the starting Solution. DS/PLL microcapsules with ellipsoidal or spherical outline are obtained after removal of templates in disodium ethylene diamine tetraacetate dehydrate (EDTA) without PLL. Their shell thickness and negative surface charges increase with the DS weight percentage in the templates. The surface potential of DS/PLL microcapsules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a hollow Au/Pd core/shell nanostructure with a raspberry surface was developed for methanol, ethanol, and formic acid oxidation in alkaline media. The results showed that it possessed better electrocatalyst performance than hollow Au nanospheres or Pd nanoparticles. The nanostructure was fabricated via a two-step method. Hollow Au nanospheres were first synthesized by a galvanic replacement reaction, and then they were coated with a layer of Pd grains. Several characterizations such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS) were used to investigate the prepared nanostructures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have reported a facile method for the synthesis of ordered magnetic core-manganese oxide shell nanostructures. The process included two steps. First, manganese ferrite nanoparticles were obtained through a solvothermal method. Then, the manganese ferrite nanoparticles were mixed directly with KMnO4 solution without any additional modified procedures of the magnetic cores. It has been found that Mn element in the core can react with KMnO4 to form manganese oxide which acts as a seed for the in-situ growth of manganese oxide shells. This is significant for the controllable fabrication of symmetrical ordered manganese oxide shell structures. The shell thickness can be easily controlled through the reaction time. Transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray powder diffraction and energy-dispersive X-ray spectroscopy have been employed to characterize the products at different reaction time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method to synthesize Fe3O4 core/Au shell submicrometer structures with very rough surfaces on the nanoscale is reported. The Fe3O4 particles were first modified with uniform polymers through the layer-by-layer technique and then adsorbed a lot of gold nanoseeds for further Au shell formation. The shell was composed of a large number of irregular nanoscale An particles arranged randomly, and there were well-defined boundaries between these Au nanoparticles. The Fe3O4 core/Au shell particles showed strong plasmon resonance absorption in the near-infrared range, and can be separated quickly from solution by an external magnet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, well-defined temperature- and pH-sensitive core-shell microgels were synthesized by graft copolymerization in the absence of surfactant and stabilizer. The microgel particles consisted of poly (N-isopropylacrylamide (NIPAm)) core crosslinked with N, N'-methylene-bisacrylamide (MBA) and polyvinylamine (PVAm) shell. The effect of MBA content and NIPAm/PVAm ratio on microgel size was investigated. SEM showed that the microgels were spherical and had narrow particle-size distribution. TEM images of the microgels clearly displayed well-defined core-shell morphologies. Zeta-potential measurement further elucidated that the microgels possessed positively charged PVAm molecules on the microgel surface. Turbidity measurement and H-1-nuclear magnetic resonance (NMR) experiments indicated that the VPTT of microgels was the same as the LCST of PNIPAm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Ln = Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE = rare earth elements) and SiO2@Gd2O3:Ln(3+) (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles).