93 resultados para SECRETORY CAVITIES
Resumo:
The discovery of the highly productive Renqiu buried hill reservoir in Bohai Bay Basin in 1975 started the high tide of finding buried hill reservoirs in China and their research. As the advance of E&P technologies, the study of buried hill reservoir in China had a qualitative leap. The reservoir description and some other aspects of development have reached or approached to the international leading level. However, some core techniques for reservoir study such as structure & faulting system study, formation prediction and connection study and heterogeneous model's construction could not completely carry out the quantitative or accurate reservoir description, e. g. the areal distribution of porosity, permeability and oil saturation. Especially, the modeling for reservoir simulation is still wandering in the stage of simplicity. The inaccurate understanding of geology could not derive 3D heterogeneous geological model that can reveal the actual underground situation thus could not design practical and feasible oilfield development plan. Therefore, the problems of low oil recovery rate, low recovery factor and poor development effectiveness have not been solved. The poor connection of the reservoir determined that waterflooding could not get good development effect and the production had to depend on the reservoir elastic energy, and this will bring big difficulty for development modification and improvement of oil recovery. This study formed a series of techniques for heterogeneous model research that can be used to construct heterogeneous model consistent with the reservoir geology. Thus the development effectiveness, success ratio of drilling and percent of producing reserves can be enhanced. This study can make the development of buried hill reservoir be of high recovery rate and high effect. The achievements of this study are as follows: 1. Evaluated the resources, summarized the geological characteristics and carried out the reservoir classification of the buried hill reservoirs in Shengli petroliferous area; 2. Established the markers for stratigraphical correlation and formed the correlation method for complex buried hill reservoirs; 3. Analyzed the structural features of the buried hill reservoirs, finished the structure interpretation and study of faulting system using synthetic seismograms, horizontal slices and coherent analysis, and clarified structural development history of the buried hill reservoirs in Shengli petroliferous area; 4. Determined the 3 classes and 7 types of pore space and the main pore space type, the logging response characteristics and the FMI logging identified difference between artificial and natural fractures by the comprehensive usage of core analysis, other lab analyses, conventional logging, FMI logging and CMR logging; 5. Determined the factors controlled the growth of the fractures, vugs and cavities, proposed the main formation prediction method for buried hill reservoir and analyzed their technical principium and applicability, and formed the seismic method and process for buried hill reservoir description; 6. Established the reserve calculation method for buried hill reservoirs, i. e. the reserves of fractures and matrix are calculated separately; the recoverable reserves are calculated by decline method and are classified by the SPE criteria; 7. Studied restraining barriers and the sealing of the faults thus clarified the oil-bearing formations of the buried hill reservoirs, and verified the multiple reservoir forming theory; 8. Formed reasonable procedure of buried hill reservoir study; 9. Formed the 3 D modeling technology for buried hill reservoirs; 10. Studied a number of buried hill blocks on the aspects of reservoir description, reservoir engineering and development plan optimization based on the above research and the profit and social effect are remarkable.
Resumo:
Seepage control in karstic rock masses is one of the most important problems in domestic hydroelectric engineering and mining engineering as well as traffic engineering. At present permeability assessment and leakage analysis of multi-layer karstic rock masses are mainly qualitative, while seldom quantitative. Quantitative analyses of the permeability coefficient and seepage amount are conducted in this report, which will provide a theoretical basis for the study of seepage law and seepage control treatment of karstic rocks. Based on the field measurements in the horizontal grouting galleries of seepage control curtains on the left bank of the Shuibuya Hydropower Project on the Qingjiang river, a hydraulic model is established in this report, and the computation results will provide a scientific basis for optimization of grouting curtain engineering. Following issues are addressed in the report. (1) Based on the in-situ measurements of fissures and karstic cavities in grouting galleries, the characteristics of karstic rock mass is analyzed, and a stochastic structural model of karstic rock masses is set up, which will provide the basis for calculation of the permeability and leakage amount of karstic rock mass. (2) According to the distribution of the measured joints in the grouting galleries and the stochastic results obtained from the stochastic structural model of karstic rock mass between grouting galleries, a formula for computation of permeability tensor of fracturing system is set up, and a computation program is made with Visual Basic language. The computation results will be helpful for zoning of fissured rock masses and calculation of seepage amount as well as optimization of seepage control curtains. (3) Fractal theory is used to describe quantitatively the roughness of conduit walls of karstic systems and the sinuosity of karstic conduits. It is proposed that the roughness coefficient of kastic caves can be expressed by both fractal dimension Ds and Dr that represent respectively the extension sinuosity of karstic caves and the roughness of the conduit walls. The existing formula for calculating the seepage amount of karstic conduits is revised and programmed. The seepage amount of rock masses in the measured grouting galleries is estimated under the condition that no seepage control measures are taken before reservoir impoundment, and the results will be helpful for design and construction optimization of seepage curtains of the Shuibuya hydropower project. This report is one part of the subject "Karstic hydrogeology and the structural model and seepage hydraulics of karstic rock masses", a sub-program of "Study on seepage hydraulics of multi-layer karstic rock masses and its application in seepage control curtain engineering", which is financially supported by the Hubei Provincial key science and technology programme.
Resumo:
Although the influence of emotional states on immune function has been generally recognized, researches on the effects of negative emotion on individual SIgA levels have reported mixed findings. Our study aimed to elucidate the relationship between changes in EEG activity and cognitive and psychological mechanisms to the immune changes induced by negative emotion. In experiment one, we investigated how the negative emotional arousal that was induced by watching a number of unpleasant pictures altered the concentration of secretory immunoglobulin A (SIgA). Although our results found discrepancies in the changing tendency of SIgA concentration among participants (some participants’ SIgA decreased after watching unpleasant pictures, whereas others increased), further analysis revealed a coherency among the changing of SIgA concentration, participants’ general coping styles and their actual emotion regulation strategies in perceiving unpleasant pictures, and the event-related potentials (ERPs) associated with the watching of unpleasant pictures. The participants whose SIgA increased after watching unpleasant pictures (the increasers) had higher positive coping scores in the Trait Coping Styles Questionnaire (TCSQ) than those whose SIgA decreased (the decreasers). Also, relative to the decreasers, the increasers tended to use more emotion regulation strategies especially when the presented pictures were extremely negative and exhibited a reverse dissociation pattern between the extremely negative pictures and the moderately negative ones in the amplitude of late positive potential (LPP) that was related to the cognitive evaluation of stimuli’s meaning. On this basis, Event-related potentials were recorded first while participants passively viewed unpleasant pictures, and then during an emotion regulation block in which participants were instructed to reappraise unpleasant pictures in the experiment two. We also collected the immune index before and after the passive viewing block and the emotion regulation block. Our study proved that participants felt a less intense emotional response to unpleasant pictures that followed a reappraisal instruction. The decreasing emotional responding to unpleasant pictures decreased the amplitude of the LPP. But larger N2 was induced in the emotion regulation block, because the participants needed to obtained more attentional resources to detect and integrate more stimulus features to use the cognitive reappraisal strategy effectively. The present study has important theoretic and practical significance. For the theoretic significance, our study elucidated the relationship between changes in EEG activity and cognitive and psychological mechanisms to the immune changes induced by negative emotion by using the technologies of ERP, experimental interview and psychological measurement. Meanwhile, our study also provided an explanation for the different changing tendencies of SIgA induced by negative emotions, and it plays an important role in further studying the cognitive neural mechanisms of immune level in response to emotion. As to the practical significance, our study suggests that individuals who use active emotion regulation in the face of negative emotion stimuli may experience significantly increases in immune system function, subsequently lowering the possibility of infection.