100 resultados para Riesz fractional advection–dispersion equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bagnold-type bed-load equations are widely used for the determination of sediment transport rate in marine environments. The accuracy of these equations depends upon the definition of the coefficient k(1) in the equations, which is a function of particle size. Hardisty (1983) has attempted to establish the relationship between k(1) and particle size, but there is an error in his analytical result. Our reanalysis of the original flume data results in new formulae for the coefficient. Furthermore, we found that the k(1) values should be derived using u(1) and u(1cr) data; the use of the vertical mean velocity in flumes to replace u(1) will lead to considerably higher k(1) values and overestimation of sediment transport rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fractional-step method of predictor-corrector difference-pseudospectrum with unconditional L(2)-stability and exponential convergence is presented. The stability and convergence of this method is strictly proved mathematically for a nonlinear convection-dominated flow. The error estimation is given and the superiority of this method is verified by numerical test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For some species, hereditary factors have great effects on their population evolution, which can be described by the well-known Volterra model. A model developed is investigated in this article, considering the seasonal variation of the environment, where the diffusive effect of the population is also considered. The main approaches employed here are the upper-lower solution method and the monotone iteration technique. The results show that whether the species dies out or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the hereditary effects. The evolution of the population may show asymptotic periodicity, provided a certain condition is satisfied for the above factors. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this paper is to investigate the effects of the impulse and time delay on a type of parabolic equations. In view of the characteristics of the equation, a particular iteration scheme is adopted. The results show that Under certain conditions on the coefficients of the equation and the impulse, the solution oscillates in a particular manner-called "asymptotic weighted-periodicity".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instead of discussing the existence of a one-dimensional traveling wave front solution which connects two constant steady states, the present work deals with the case connecting a constant and a nonhomogeneous steady state on an infinite band region. The corresponding model is the well-known Fisher equation with variational coefficient and Dirichlet boundary condition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio epsilon, represented by the ratio of amplitude to depth, and the dispersion ratio mu, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(mu(2)). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An empirical equation is proposed to accurately correlate isothermal data over a wide range of temperature With the equation ln k = A* + B*/T-lambda the retention times of different solutes tested on OV-101, SE-54 and PEG 20M capillary columns have been achieved even when lambda is assigned a constant value of 1.7 Comparison with ln k = A + B/T and in k = c + d/T+ h/T-2, shows that the proposed equation is of higher accuracy and is applicable to extrapolation calculation, especially from data at high temperature to those at low temperature. Parameters A* and B* as well as A and B are also discussed. The linear correlation of A* and B* is weaker than that of A and B.