310 resultados para Rare earth compounds
Resumo:
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.
Resumo:
Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).
Rare earth metal complexes bearing thiophene-amido ligand: Synthesis and structural characterization
Resumo:
2,6-Diisopropyl-N-(2-thienylmethyl) aniline ( H2L) has been prepared, which reacted with equimolar rare earth metal tris( alkyl)s, Ln( CH2SiMe3)(3)( THF)(2), afforded rare earth metal mono( alkyl) complexes, LLn(CH2SiMe3)(THF)(3) ( 1: Ln = Lu; 2: Ln = Y). In this process, H2L was deprotonated by one metal alkyl species followed by intramolecular C-H activation of the thiophene ring to generate dianionic species L2- with the release of two tetramethylsilane. The resulting L2- combined with three THF molecules and an alkyl unit coordinates to Y3+ and Lu3+ ions, respectively, in a rare N,C-bidentate mode, to generate distorted octahedron geometry ligand core. Whereas, with treatment of H2L with equimolar Sc(CH2SiMe3)(3)( THF)(2), a heteroleptic complex ( HL)( L) Sc( THF) ( 3) was isolated as the main product, where the dianionic L2- species bonds to Sc3+ via chelating N, C atoms whilst the monoanionic HL connects to Sc3+ in an S,N-bidentate mode. All complexes 1-3 have been characterized by NMR spectroscopy and X-ray diffraction analysis.
Resumo:
The aim of this presentation is to report a new result of afterglow materials. The Y2OS: Ln(3+) (Ln = Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sin(3+) and Tin(3+) in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the Irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method tinder 1050 degreesC, for 6 It have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be. useful in finding some new long-lasting phosphors with different colors.
Resumo:
The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.
Resumo:
The organic/inorganic hybrid Langmuir-Blodgett (LB) films were obtained by the compact organization of poly(1,2-dihydro-2,2,4-trimethyl)quinoline (PQ), octadecylamine (ODA) and rare earth-substituted heteropolymolybdates. They were characterized by surface pressure-area (pi-A) isotherms, absorption spectra, fluorescence spectra, atomic force microscope (AFM) and scanning tunneling microscopy (STM). The atomic force microscope revealed a granular surface texture of nanosized rare earth-substituted heteropolymolybdate. The scanning tunneling microscopy indicated that the hybrid LB films containing rare earth-substituted heteropolymolybdates had the better electrical conductivity than LB film of PQ/ODA.
Resumo:
Three kinds of hybrid organic/inorganic Langmuir-Blodgett films are obtained by the compact organization of poly (1, 2-dihydro-2,2,4-trimethyl)quinoline (abridged as PQ), octadecylamine(abridged as OA) and rare earth-substituted heteropolyanions [abridged as RE(PW11,)(2), RE=Ce-II, Eu-II, Gd-II] using the Langmuir-Blodgett technique. They are characterized by the pi-A isotherms, the absorption spectra, the fluorescence spectra and the atomic force microscope. The scanning tunneling microscopy shows that the conductivity of the hybrid LB films is much better after heteropolyanions having been incorporated in the films.
Resumo:
Three kinds of hybrid Langmuir-Blodgett films are obtained by the organization of poly(1-hydro-2,2,4-trimethyl)quinoline (PQ), stearic acid(SA) and rare earth-substituted heteropolymolybdates (RE(PMo11)(2), RE = Ce-III, Eu-III, La-III) using the Langmuir-Blodgett technique. They are characterized by pi-A isotherms, absorption spectra, fluorescence spectra, IR and atomic force microscope. The absorption spectra indicate that the molecules of PQ and heteropolymolybdates are incorporated into the LB films. The atomic force microscope reveals that heteropolymolybdates aggregate at the surface of the LB film.
Resumo:
A series of La2O3-ZrO2-CeO2 composite oxides were synthesized by solid-state reaction. The final product keeps fluorite structure when the molar ratio Ce/Zr >= 0.7/0.3, and below this ratio only mixtures of La2Zr2O7 (pyrochlore) and La2O3-CeO2 (fluorite) exist. Averagely speaking, the increase of CeO2 content gives rise to the increase of thermal expansion coefficient and the reduction of thermal conductivity, but La-2(Zr0.7Ce0.3)(2)O-7 has the lowest sintering ability and the lowest thermal conductivity which could be explained by the theory of phonon scattering. Based on the large thermal expansion coefficient of La2Ce3.25O9.5, the low thermal conductivities and low sintering abilities of La2Zr2O7 and La-2(Zr0.7Ce0.3)(2)O-7, double-ceramic-layer thermal barrier coatings were prepared. The thermal cycling tests indicate that such a design can largely improve the thermal cycling lives of the coatings. Since no single material that has been studied so far satisfies all the requirements for high temperature thermal barrier coatings, double-ceramic-layer coating may be an important development direction of thermal barrier coatings.
Resumo:
Bulk and nanoscale powders of YAG:Re (Re = Ce, Pr, Tb) were synthesized by solid-state and sol-gel method. The changes of spectra and energy level were studied. Compared with the bulk YAG:Re (Re = Ce, Pr, Tb) crystals, the lattice parameter of YAG:Re (Re = Ce, Pr, Tb) nanocrystals decreases. It is also found that the excitation peaks of 5d energy levels shift in nanocrystals. The physical reason for spectral and energy level changes is a comprehensive result from the shift of energy centroid of the 5d orbit, the Coulomb interaction between 4f and 5d electrons and the crystal field splitting of the 5d energy level.
Resumo:
The Sr2Mg(BO3)(2) phosphors doped respectively with Tm3+, Tb3+ and Dy3+ as activator were prepared by high temperature solid-state reaction. All the thermo luminescence curves of the phosphors consisted of two isolated peaks and the Dy3+ activated sample exhibited the strongest thermo luminescence intensity. The kinetic parameters of the thermoluminescence of Sr2Mg(BO3)(2):0.04 Dy were calculated employing the peak shape method and 3 dimensional thermo luminescent emission spectra were observed peaking at 480, 579, 662 and 755 nm due to the characteristic transition of Dy3+. In addition, the pre-irradiation heat-treatment and the thermoluminescence dose response of Sr2Mg(BO3)(2):0.04 Dy were investigated.
Resumo:
In this paper, the extractabilities of Cyanex 302 and purified Cyanex 302 (hereafter HBTMPTP or HA) in heptane have been compared by extracting the scandium, yttrium, lanthanum, and gadolinium from hydrochloric acid solutions. The roles of the different components in Cyanex 302 on lanthanum extraction have been analyzed. The result demonstrates that the Cyanex 302 has a higher extractability than HBTMPTP, which perhaps originates from the interaction among the components in Cyanex 302. Especially for R3PO, obviously synergistic effect can be observed in the lower pH range and extraction mechanism of lanthanum using the mixture of HBTMPTP and TOPO has been deduced to be:where (HA)(2) and B denote the dimeric form of HBTMPTP and TOPO, respectively. At the same time, the separation abilities of Cyanex 302 and HBTMPTP on the rare earth elements have been compared. Also, the effect of temperature on the extraction with Cyaenx 302, HBTMPTP and the mixture of HBTMPTP and TOPO has also been discussed with thermodynamic functions Delta H, Delta S, and Delta G calculated.
Resumo:
CaWO4 phosphor films doped with rare-earth ions (Eu3+, Dy-,(3+) Sm3+, Er3+) were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis, atomic force microscopy, and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting powders and films. The results of the XRD analysis indicated that the films began to crystallize at 400degreesC and that the crystallinity increased with elevation of the annealing temperature. The doped rare-earth ions showed their characteristic emissions in crystalline CaWO4 phosphor films due to energy transfer from WO42- groups to them. Both the lifetimes and PL intensities of the doped rare-earth ions increased with increasing annealing temperature, from 500 to 900degreesC, and the optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined as 30, 1.5, 1.5, 0.5 at.% of Ca2+ in CaWO4 films annealed at 900degreesC, respectively.
Resumo:
Several ultrathin luminescent Langmuir-Blodgett (LB) films have been prepared by using the subphase containing the rare earth ions (Eu3+, Tb3-). The effect of the rare earth ions on the monolayer of 2-n-heptadecanoylbenzoic acid (HBA) was investigated. IR and UV spectra showed the rare earth ions were bound to the carboxylic acid head groups and the coordination took place between the polar head group and the rare earth ions. The layer structure of the LB films was demonstrated by low-angle X-ray diffraction. UV absorbance intensity increases linearly with the number of LB films layers, which indicate that the LB films are homogeneously deposited. The LB films can give off strong fluorescence. and the signal can be detected from a single layer. The characteristic luminescence behaviors of LB films have been discussed compared with those of the complexes.
Resumo:
In this work, the LB films based on heteropolytungstate of Dy and Sm have been prepared. The X-ray diffraction shows the LB films have a highly ordered lamella structure. The luminescence characteristics of the LB films were studied. The charge transfer bands of LB films are in higher energies than those of the corresponding solids. It is noticed that the yellow to blue intensity ratio (Y:B) of Dy3+ in the LB films is different from that of the solid. The differences in the spectra show that the Dy3+ site symmetry in LB film was changed due to the interaction between the surfactant and the polyanions. The differences could also be found in the luminescence spectra of the LB films of Sm complex.