96 resultados para REVERSING SYMMETRY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-step phase transition model, displacive to order-disorder, is proposed. The driving forces for these two transitions are fundamentally different. The displacive phase transition is one type of the structural phase transitions. We clearly define the structural phase transition as the symmetry broking of the unit cell and the electric dipole starts to form in the unit cell. Then the dipole-dipole interaction takes place as soon as the dipoles in unit cells are formed. We believe that the dipole-dipole interaction may cause an order-disorder phase transition following the displacive phase transition. Both structural and order-disorder phase transition can be first-order or second-order or in between. We found that the structural transition temperatures can be lower or equal or higher than the order-disorder transition temperature. The para-ferroelectric phase transition is the combination of the displacive and order-disorder phase transitions. It generates a variety of transition configurations along with confusions. In this paper, we discuss all these configurations using our displacive to order-disorder two-step phase transition model and clarified all the confusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The density distribution of inhomogeneous dense deuterium-tritium plasmas in laser fusion is revealed by the energy loss of fast protons going through the plasma. In our simulation of a plasma density diagnostics, the fast protons used for the diagnostics may be generated in the laser-plasma interaction. Dividing a two-dimensional area into grids and knowing the initial and final energies of the protons, we can obtain a large linear and ill-posed equation set. for the densities of all grids, which is solved with the Tikhonov regularization method. We find that the accuracy of the set plan with four proton sources is better than those of the set plans with less than four proton sources. Also we have done the density reconstruction especially. for four proton sources with and without assuming circularly symmetrical density distribution, and find that the accuracy is better for the reconstruction assuming circular symmetry. The error is about 9% when no noise is added to the final energy for the reconstruction of four proton sources assuming circular symmetry. The accuracies for different random noises to final proton energies with four proton sources are also calculated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We theoretically study the influence of Coulomb potential for photoionization of hydrogen atoms in an intense laser field with elliptical polarization. The total ionization rates, photoelectron energy spectra, and photoelectron angular distributions are calculated with the Coulomb-Volkov wave functions in the velocity gauge and compared with those calculated in the length gauge as well as those calculated with the Volkov wave functions. By comparing the results obtained by the Coulomb-Volkov and Volkov wave functions, we find that for linear polarization the influence of Coulomb potential is obvious for low-energy photoelectrons, and as the photoelectron energy and/or the laser intensity increase, its influence becomes smaller. This trend, however, is not so clear for the case of elliptical polarization. We also find that the twofold symmetry in the photoelectron angular distributions for elliptical polarization is caused by the cooperation of Coulomb potential and interference of multiple transition channels. About the gauge issue, we show that the difference in the photoelectron angular distributions obtained by the velocity and length gauges becomes rather obvious for elliptical polarization, while the difference is generally smaller for linear polarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoelectron angular distributions (PADs) from above-threshold ionization of O-2 and N-2 molecules irradiated by a bichromatic laser field of circular polarization are Studied. The bichromatic laser field is specially modulated such that it can be used to mimic a sequence of one-cycle laser pulses. The PADs are greatly affected by the molecular alignment, the symmetry of the initial electronic distribution, and the carrier-envelope phase of the laser pulses. Generally, the PADs do not show any symmetry, and become symmetric about an axis only when the symmetric axis of laser field coincides with the symmetric axis of molecules. This study shows that the few-cycle laser pulses call be used to steer the photoelectrons and perform the selective ionization of molecules. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonlinear Thomson backscattering of an intense Gaussian laser pulse by a counterpropagating energetic electron is investigated by numerically solving the electron equation of motion taking into account the radiative damping force. The backscattered radiation characteristics are different for linearly and circularly polarized lasers because of a difference in their ponderomotive forces acting on the electron. The radiative electron energy loss weakens the backscattered power, breaks the symmetry of the backscattered-pulse profile, and prolongs the duration of the backscattered radiation. With the circularly polarized laser, an adjustable double-peaked backscattered pulse can be obtained. Such a profile has potential applications as a subfemtosecond x-ray pump and probe with adjustable time delay and power ratio. (c) 2006 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pseudo-spin model is intended to describe the physical dynamics of unbound electrons in the wall of cytoskeletal microtubule (MT). Due to the inherent symmetry of the structure and the electric properties in the MT, one may treat it as a one-dimensional ferroelectric system, and describe the nonlinear dynamics of dimer electric dipoles in one protofilament of the MT by virtue of the double-well potential. Consequently, the physical problem has been mapped onto the pseudo-spin system, and the mean-field approximation has been taken to get some physical results.