109 resultados para REDOX POTENTIALS
Resumo:
A series of new catalysts, K-14[Ln(As2W17O61)(2)]. xH(2)O (Ln = La, Pr, Sm, Eu, Gd, Tb, Dy, Tm and Yb) which can electrocatalyze reduction of nitrite are presented and their electrochemical behavior is described in this paper. Bis(2:17-arsenotungstate) lanthanates which are monovacant Dawson derivatives, exhibit two 2-electron and one 1-electron waves, attributed to electron addition and removal from the tungsten-oxide framework that comprises each anion structure. The formal potentials of redox couples are dependent on solution pH. Double-hump principle of formal potentials takes effect with increasing atomic number of lanthanide elements following their special electronic shell structure. The third waves of all the heteropolyanions have good electrocatalytic activities for nitrite reduction at pH 5.0.
Resumo:
The redox conversion of heme-containing protein horseradish peroxidase (HRP), which has a molar mass of 40,000, was studied. The conversion was obtained at an electrochemical polymerized o-phenylenediamine (PPD) film-modified platinum electrode. Optical c
Resumo:
The electrochemical redox behavior of bilirubin (BR IValpha), biliverdin (BV IValpha) and their oxidized product bile-purpurin (Bi-Pu) have been studied by in situ spectroelectrochemical techniques, which reveals that the transformation of BR IValpha [GRA
Resumo:
Investigation of the redox thermodynamics of horse heart cytochrome c at bare glassy carbon electrodes has been performed using cyclic voltammetry with a nonisothermal electrochemical cell. The thermodynamic parameters of the electron-transfer reaction of cytochrome c have been estimated in different component buffer solutions. The change DELTAS(re)-degrees in reaction center entropy and the formal potential E-degrees' (at 25-degrees-C, vs. standard hydrogen electrode (SHE)) for cytochrome c are found to be -64.1 J K-1 mol-1 and 0.251 V in phosphate buffer, -64.8 J K-1 mol-1 and 0.257 V in Tris + HCl buffer, -65.6 J K-1 mol-1 and 0.261 V in Tris+CH3COOH buffer (pH 7.0, ionic strength 100 mM). The temperature dependence of the formal potential obtained in phosphate buffer with or without NaCl in the range 5-55-degrees-C shows biphase characteristics in an alkaline solution with an intersection point at ca. 44-degrees-C or 42-degrees-C, which should be due to a structural change in the protein moiety of cytochrome c. However, in acidic and neutral solutions only a monotonic relationship between E-degrees' and temperature is observed. The effect of the buffer component on E-degrees' for cytochrome c is also discussed.
Resumo:
General equations of the electrocatalytic reaction at an ultramicroelectrode modified with redox species have been described according to the Andrieux Saveant model. The electrocatalytic kinetic process has been discussed for the whole set of cases, ie (R), (R + S), (SR) (SR + E), (E), (R + E), (ER), (S), (ER + S) and (S + E) limiting situations. The effect of gamma on the catalytic steady state current shows that the higher the value of gamma, the lower the catalytic current. The kinetic process shifts rapidly from R to E with increasing values of gamma. It is favorable for catalysis only when gamma is very low. Therefore, the redox species modified ultramicroelectrode with thin film is utilized for electrocatalysis, and the larger the radius of ultramicroelectrode, the higher the catalytic efficiency.
Resumo:
Electrode capacitance and photocurrent spectra of electrodeposited polycrystalline Hg1-xCdxTe thin films of varying (1-x) were measured in polysulfide redox solution, hence the flatband potentional PHI(fb) and the bandgap E(g) of Hg1-xCdxTe thin films obtained. It was of interest to find out that only the location of conduction band E(c) shifts negatively with increasing (1-x) while the valence band E(v), is almost constant. The experimental open circuit photovoltage V0 is smaller than theoretical value V(max) calculated through flatband potential PHI(fb), therefore there is a possibility of promoting the experimental open circuit photovoltage.
Resumo:
A glucose oxidase (GOD) electrode with ferrocene (Fc) used as an electron transfer mediator has been described. Using Nafion, Fc was modified on a glassy carbon (GC) electrode surface, and glucose oxidase was then immobilized on the Fc-Nafion film, forming a GOD-Fc-Nafion enzyme electrode. The preparation method was quite simple and rapid. The enzyme electrode showed a reversible reaction of the redox couple (Fc+/Fc), used in a biosensor system, displayed a sensitive catalytic current response (response time was less than 20 s) on variation of the glucose concentration, with a wide linear range up to 16 mM and with good repeatability. The enzyme electrode showed almost no deterioration over the course of three weeks. There was little or no interference from electro-active anions, such as ascorbic acid, to the determination of glucose based on Nafion film and lower oxidizing potentials of the enzyme electrode.
Resumo:
The current equation of the electrocatalytic reaction at a microdisk electrode modified with redox species has been described and verified experimentally. There exists a linear relationship between plateau limiting current and the radius of the microdisk electrode for a catalytic process. The influence of the dimensions of the microdisk electrode on catalytic efficiency is discussed. The polyvinylferrocene (PVFc)-modified microdisk electrode prepared by the coating method was taken as a typical example, on which the electrocatalytic oxidation of ascorbic acid could be studied. The catalytic reaction rate constants were determined as an average value of 1.5 X 10(-7) cm3/mol s by this method, and are consistent with those obtained at a conventional electrode.
Resumo:
Deposition potentials of Lithium and Sodium ions have been measured in binary chloride systems (LiCl-KCl, NaCl-KCl) by I-V curve method, to provide a theoretical base for preparing high purity Al-Li alloy by electrolysis in molten salt. The changes of free energy and enthalpy were calculated in terms of depolarization values on Al cathode. Thermodynamic meaning of depolarization was discussed in details and the empirical relation between binary alloy type and depolarization type was proposed. It is shown for the first time that the presence of a third element in Al-Li alloy can strengthen depolarization of Li ion at Al alloy cathode and give foundation for preparing high purity Al-Li-M ternary alloy. The effect of LiCl concentration on deposition potentials of Li ion at Al cathode in KCl-LiCl melt was studied and average active coefficient of LiCl was obtained.
Resumo:
The electron transfer process of hemeproteins on the electrode surface is considered a promising subject in the area of bioelectrochemistry. Electrochemists believe that electron transfer between electroactive proteins and electrode surface might be expected to simulate the electron transfer between proteins. This research provides information about the electron transfer mechanism in biological system. Cytochrome c is a typical electron transferring protein,