204 resultados para Quasi-Regular Solutions
Resumo:
国家自然科学基金
Resumo:
国家863计划,国家自然科学基金
Resumo:
国家863计划,国家自然科学基金
Resumo:
A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.
Resumo:
In this paper, the mechanism of detonation to quasi-detonation transition was discussed, a new physical model to simulate quasi-detonation was proposed, and one-dimensional theoretical and numerical simulation was conducted. This study firstly demonstrates that the quasi-detonation is of thermal choking. If the conditions of thermal choking are created by some disturbances, the supersonic flow is then unable to accept additional thermal energy, and the CJ detonation becomes the unstable quasi-detonation precipitately. The kinetic energy loss caused by this transition process is firstly considered in this new physical model. The numerical results are in good agreement with previous experimental observations qualitatively, which demonstrates that the quasi-detonation model is physically correct and the study are fundamentally important for detonation and supersonic combustion research.
Resumo:
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.
Resumo:
IEECAS SKLLQG
Resumo:
Differential cross sections for the quasi-elastic scattering of C-16 at 47.5 MeV/nucleon from C-12 target are measured. Coupled-channels calculations are carried out and the optical potential parameters are obtained by fitting the experimental angular distribution.