107 resultados para Quantitative trait locus (QTL)
Resumo:
利用AFLP和微卫星标记,以凡纳滨对虾F1全同胞家系为作图群体,构建了凡纳滨对虾的雌性和雄性遗传连锁图谱并对生长相关性状体长和体重进行了QTL分析。利用经过筛选的108对AFLP引物组合,对亲本和94个子代个体进行了分离分析。共得到2041个多态AFLP标记(1:1分离)。平均每个引物组合产生20个多态片段。有826个AFLP标记偏离孟德尔遗传(40.5%, P<0.05)。所筛选的100个微卫星标记中有30个在家系中有作图信息,分别有24个和20个位点可以用于母本和父本的作图。对父母本β-1,3-葡聚糖结合蛋白(BGBP),脂多糖和葡聚糖结合蛋白(LGBP)和蜕皮抑制激素(MIH)等基因片段进行序列分析得到一些可用于构建连锁图谱的SNP标记。 对所有的分离标记进行了连锁分析,分别绘制了凡纳滨对虾的雌性和雄性连锁图谱。雌性连锁图谱的框架图有319个遗传标记组成,分布于45个连锁群,其中AFLP标记300个,微卫星位点18个,性别标记一个,连锁群长度从29.5cM到260.0cM, 每个连锁群含4-16个标记。图谱长度为4134.4 cM, 各连锁群平均图距在7.6到25.9 cM之间,总平均图距为15.1 cM。有267个标记(含14个微卫星)整合到雄性框架图上。 雄性框架图也含45个连锁群,长度从14.2cM到161.1cM, 图谱长度为3220.9 cM, 各连锁群平均图距在4.1到25.5 cM之间,总平均图距为14.5 cM。 作图群体所有个体的性别均作为标记整合到雌雄分离信息中,在94个F1个体中,54个为雌虾,40个是雄虾。在雌性图谱第29连连锁群上,性别与三个微卫星标记紧密连锁(v1f148, v145f120, v95f166), 图距分别为6.6, 8.6 和8.6cM, 相应LOD值分别为17.8 14.3 和 16.4。 与雌性图相对应的是,雄性图谱未发现任何与性别连锁的标记。推测凡纳滨对虾的性别决定机制可能是ZW型,其中雌性为异配性别。 体长和体重均显示出连续变异的特点,显示这些与生长相关的性状都是典型的数量性状或多基因遗传。体重和体长符合正态分布且两性状之间存在着显著的相关性(P<0.001),Pearson 相关系数为0.95。在凡纳滨对虾雌性图谱和雄性图谱上,共定位了6个与体长和体重等生长性状相关的QTL,可解释的表型变异从15.1%到21.3%。共检测到3个与体长相关的QTL,包括两个正向效应的QTL和一个负向的QTL,分别定位到雌性的第6连锁群和雄性的第4和11 连锁群上。体重也检测到3个QTL,其中一个QTL加性效应是正向的,分别位于雌性的第6和7连锁群及雄性的第11连锁群上。QTL主要集中在雌性图谱的Fc6和Fc7及雄性图的Mc4和Mc11上。体长和体重的QTL定位结果中各有两个是十分相似的,其相邻的标记位点完全一样,只是相应的LOD值略有差异,还各存在两性状特异的一个QTL。大多QTL与相邻标记之间的距离只有0.1cM(仅Wfc7的距离较大),为进一步的精细定位奠定了基础。 分子标记筛选、遗传图谱的构建及生长相关性状的QTL定位为我们下一步从事分子标记辅助选择育种,QTL精细定位和比较基因作图打下基础,并最终推动凡纳滨对虾的遗传改良。
Resumo:
Spatial population data, obtained through the pixeling method, makes many related researches more convenient. However, the limited methods of precision analysis prevent the spread of spatial distribution methods and cumber the application of the spatial population data. This paper systematically analyzes the different aspects of the spatial population data precision, and re-calculates them with the reformed method, which makes breakthrough for the spread of the pixeling method and provides support and reference for the application of spatial population data. The paper consists of the following parts: (2) characters of the error; (2) origins of the error; (3) advancement on the calculating methods of the spatial population data. In the first place, based on the analysis of the error trait, two aspects of the spatial population data precision are characterized and analyzed: numerical character and spatial distributing character. The later one, placed greater emphasis on in this paper, is depicted in two spatial scales: county and town. It is always essential and meaningful to the research in this paper that spatial distribution is as important as numerical value in analyzing error of the spatial distributed data. The result illustrates that the spatial population data error appears spatially in group, although it is random in the aspect of data statistics, all of that shows there lies spatial systematic error. Secondly, this paper comes to conclude and validate the lineal correlation between the residential land area (from 1:50000 map and taken as real area) and population. Meanwhile, it makes particular analysis on the relationship between the residential land area, which is obtained from the land use map and the population in three different spatial scales: village, town and county, and makes quantitative description of the residential density variation in different topological environment. After that, it analyzes the residential distributing traits and precision. With the consideration of the above researches, it reaches the conclusion that the error of the spatial distributed population is caused by a series of factors, such as the compactness of the residents, loss of the residential land, the population density of the city. Eventually, the paper ameliorates the method of pixeling the population data with the help of the analysis on error characters and causes. It tests 2-class regionalization based on the 1-class regionalization of China, and resorts the residential data from the land use map. In aid of GIS and the comprehensive analysis of various data source, it constructs models in each 2-class district to calculate spatial population data. After all, LinYi Region is selected as the study area. In this area, spatial distributing population is calculated and the precision is analyzed. All it illustrates is that new spatial distributing population has been improved much. The research is fundamental work. It adopts large amounts of data in different types and contains many figures to make convincing and detailed conclusions.
Resumo:
Fluvial Sedimentation of alluvial facies prevailed during the Late Jrassic in the Minhe Basin.On the basis of the study of sedimentary facies of the Upper Jurassic series.this paper focuses on the river types suing the "Architecture Element" analysis method proposed by Miall,and calculated all the quantitative parameters to reflect the characteristics of the stream channel geometry and hydrodynamic conditions of paleo-rivers with the equations of ethrideg,schumm et al.Finally,we discussed the characteristics of environmental evolution of palsorivers on the quantitative basis.Our conclusion indicates that the evolution of paleo-rivers during the Late Jurassic,from early to late,shows such a tendency as alluvial fan river→ braid river→alluvial fan river→mid-sinuoisty river→ high-sinuosity river.