113 resultados para Prove a fatica
Resumo:
研究资源受限系统动态调度问题,针对时序约束问题提出一种并行遗传算法(PGA)。给出满足排序优先次序约束的一种基因编码方法;采用不破坏优先级可行性的交叉操作,并予以证明;建立一种并行处理机制,使搜索避免出现局优现象。在技术允许情况下,单机动态调度引入抢占式加工方式,会一定程度上提高系统的性能。通过仿真试验验证,并行GA算法可兼顾优化效果和计算效率,解决单机动态调度问题。
Resumo:
为解决当前数字化工厂模型所存在的实时性不强和集成性不足等问题,提出了使用管控系统间集成通用标准--SP95标准进行数字化工厂建模。在应用SP95标准对工厂模型进行定义和描述的基础上,结合国内离散企业中的实际情况,提出了一种扩展的工厂模型。该模型在SP95标准的基础上扩展了料架和变量两个元素,并介绍了其实现方式和作用。通过SP95标准提供的功能,扩展了基于可扩展标记语言技术的制造标记语言的Schema结构,为业务系统集成提供统一的数据共享格式。最后给出了一个构建工厂模型的实例,验证了所提出的模型。
Resumo:
汽车混流总装线上交替装配不同型号的汽车产品,不同型号的汽车在同一装配工位上装配的零部件可能不同,如果不对车型的投产顺序加以优化排序,连续投入一种相同的车型,会使同一个工位的零部件消耗率严重不均衡。为了使各装配工位的零部件消耗率达到均匀化和平准化,本文采用模拟退火优化算法,对车型上线序列进行优化,最后的实例验证表明算法是可行的。
Resumo:
提出了一种基于改进模糊C均值的BP神经网络分类器的设计,通过改进的模糊C均值算法对大量的数据进行聚类划分,然后设计BP神经网络对划分后的数据进行训练和测试,最后由计算机进行综合判断.试验证明该分类器是有效的,可以对高速公路车辆的车型进行迅速判别.
Resumo:
So far, there is no methods of logging interpretation effective enough to identify a low resistivity payzone since its resistivity value almost equals to that of an aquifer although many low-resistivity payzones have been found in lots of petroliferous basins worldwide. After a thorough study on those technical difficulties of the logging interpretation for the low-resistivity payzones, some corresponding resolutions have been put forward in this paper. In order to reveal its microscopic mechanism, researches on the discovered low-resistivity payzones have been carried on with analyses of core and lab test data, thus main influencing factors of the low-resistivity reservoirs have been pointed out including conductivity minerals, clay minerals, fluids, porosity and pore structure. In order to make clear the degree of influence of those reservoir factors on resistivity logging(log), lab studies and numeral simulations have been done with the typical core and formation water samples, therefore, their influence degrees have ascertained quantitatively or semi-quantitatively. The distribution law and possible distribution areas of the low-resistivity payzones in Jiyang Depression have been figured out firstly after the macroscopic geology origins (sedimentation, dynamic accumulation process, diagenesis etc.) in the area have been studied. In order to resolve the problem of difficult logging-interpretation, methods of interpretation and identification have been brought forward creatively according to the low-resistivity payzone type ascribed to macroscopic geology laws and to the combined features of logging traces, after a systemic summary of different responses of logging caused by different microscopic mechanism. Those methods have been applied in Dongying and Huimin Sag of Shengli Exploration Area, precision of identification of the low-resistivity payzones improved effectively and good economic attraction prove their great prospect.
Resumo:
Seismic Numerical Modeling is one of bases of the Exploratory Seismology and Academic Seismology, also is a research field in great demand. Essence of seismic numerical modeling is to assume that structure and parameters of the underground media model are known, simulate the wave-field and calculate the numerical seismic record that should be observed. Seismic numerical modeling is not only a means to know the seismic wave-field in complex inhomogeneous media, but also a test to the application effect by all kinds of methods. There are many seismic numerical modeling methods, each method has its own merits and drawbacks. During the forward modeling, the computation precision and the efficiency are two pivotal questions to evaluate the validity and superiority of the method. The target of my dissertation is to find a new method to possibly improve the computation precision and efficiency, and apply the new forward method to modeling the wave-field in the complex inhomogeneous media. Convolutional Forsyte polynomial differentiator (CFPD) approach developed in this dissertation is robust and efficient, it shares some of the advantages of the high precision of generalized orthogonal polynomial and the high speed of the short operator finite-difference. By adjusting the operator length and optimizing the operator coefficient, the method can involve whole and local information of the wave-field. One of main tasks of the dissertation is to develop a creative, generalized and high precision method. The author introduce convolutional Forsyte polynomial differentiator to calculate the spatial derivative of seismic wave equation, and apply the time staggered grid finite-difference which can better meet the high precision of the convolutional differentiator to substitute the conventional finite-difference to calculate the time derivative of seismic wave equation, then creating a new forward method to modeling the wave-field in complex inhomogeneous media. Comparing with Fourier pseudo-spectral method, Chebyshev pseudo-spectral method, staggered- grid finite difference method and finite element method, convolutional Forsyte polynomial differentiator (CFPD) method has many advantages: 1. Comparing with Fourier pseudo-spectral method. Fourier pseudo-spectral method (FPS) is a local operator, its results have Gibbs effects when the media parameters change, then arose great errors. Therefore, Fourier pseudo-spectral method can not deal with special complex and random heterogeneous media. But convolutional Forsyte polynomial differentiator method can cover global and local information. So for complex inhomogeneous media, CFPD is more efficient. 2. Comparing with staggered-grid high-order finite-difference method, CFPD takes less dots than FD at single wave length, and the number does not increase with the widening of the studying area. 3. Comparing with Chebyshev pseudo-spectral method (CPS). The calculation region of Chebyshev pseudo-spectral method is fixed in , under the condition of unchangeable precision, the augmentation of calculation is unacceptable. Thus Chebyshev pseudo-spectral method is inapplicable to large area. CFPD method is more applicable to large area. 4. Comparing with finite element method (FE), CFPD can use lager grids. The other task of this dissertation is to study 2.5 dimension (2.5D) seismic wave-field. The author reviews the development and present situation of 2.5D problem, expatiates the essentiality of studying the 2.5D problem, apply CFPD method to simulate the seismic wave-field in 2.5D inhomogeneous media. The results indicate that 2.5D numerical modeling is efficient to simulate one of the sections of 3D media, 2.5D calculation is much less time-consuming than 3D calculation, and the wave dispersion of 2.5D modeling is obviously less than that of 3D modeling. Question on applying time staggered-grid convolutional differentiator based on CFPD to modeling 2.5D complex inhomogeneous media was not studied by any geophysicists before, it is a fire-new creation absolutely. The theory and practices prove that the new method can efficiently model the seismic wave-field in complex media. Proposing and developing this new method can provide more choices to study the seismic wave-field modeling, seismic wave migration, seismic inversion, and seismic wave imaging.
Resumo:
Geophysical inversion is a theory that transforms the observation data into corresponding geophysical models. The goal of seismic inversion is not only wave velocity models, but also the fine structures and dynamic process of interior of the earth, expanding to more parameters such as density, aeolotropism, viscosity and so on. As is known to all, Inversion theory is divided to linear and non-linear inversion theories. In rencent 40 years linear inversion theory has formed into a complete and systematic theory and found extensive applications in practice. While there are still many urgent problems to be solved in non-linear inversion theory and practice. Based on wave equation, this dissertation has been mainly involved in the theoretical research of several non-linear inversion methods: waveform inversion, traveltime inversion and the joint inversion about two methods. The objective of gradient waveform inversion is to find a geologic model, thus synthetic seismograms generated by this geologic model are best fitted to observed seismograms. Contrasting with other inverse methods, waveform inversion uses all characteristics of waveform and has high resolution capacity. But waveform inversion is an interface by interface method. An artificial parameter limit should be provided in each inversion iteration. In addition, waveform information will tend to get stuck in local minima if the starting model is too far from the actual model. Based on velocity scanning in traditional seismic data processing, a layer-by-layer waveform inversion method is developed in this dissertation to deal with weaknesses of waveform inversion. Wave equation is used to calculate the traveltime and derivative (perturbation of traveltime with respect to velocity) in wave-equation traveltime inversion (WT). Unlike traditional ray-based travetime inversion, WT has many advantages. No ray tracing or traveltime picking and no high frequency assumption is necessary and good result can be got while starting model is far from real model. But, comparing with waveform inversion, WT has low resolution. Waveform inversion and WT have complementary advantages and similar algorithm, which proves that the joint inversion is a better inversion method. And another key point which this dissertation emphasizes is how to give fullest play to their complementary advantages on the premise of no increase of storage spaces and amount of calculation. Numerical tests are implemented to prove the feasibility of inversion methods mentioned above in this dissertation. Especially for gradient waveform inversion, field data are inversed. This field data are acquired by our group in Wali park and Shunyi district. Real data processing shows there are many problems for waveform inversion to deal with real data. The matching of synthetic seismograms with observed seismograms and noise cancellation are two primary problems. In conclusion, on the foundation of the former experiences, this dissertation has implemented waveform inversions on the basis of acoustic wave equation and elastic wave equation, traveltime inversion on the basis of acoustic wave equation and traditional combined waveform traveltime inversion. Besides the traditional analysis of inversion theory, there are two innovations: layer by layer inversion of seimic reflection data inversion and rapid method for acoustic wave-equation joint inversion.
Resumo:
Petroleum and natural gas is an important strategic resources. The short of the reserves will block the development of economy and threaten the safety of nation, along with the main oil fields of our country coming to the height of power and splendor of the exploitation and exploration. Therefore, it makes a great sense to inaugurate new explorative field and increase the reserves of petroleum and natural gas. Magnetic exploration is a main method of geophysics exploration. the developing observation apparatus and the perfect processing method provide wide space for magnetic exploration in these years. The method of magnetic bright spot is an application of magnetic exploration. The vertical migration of the hydrocarbon changes physical and chemical environment above the hydrocarbon reservoir, the new environment make tervalent iron translate into bivalent iron, that produce small scale magnetic anomaly, that is magnetic bright spot. The method of magnetic bright spot explores oil and gas field by the relation between the hydrocarbon and magnetic anomaly. This paper systemically research to pick-up and identify magnetic bright spot combining an oil field item, then point out advantaged area. In order to test the result, the author use the seismic information to superpose the magnetic bright spot, that prove the magnetic bright spot is reliable. then, the author complete a software to pick and identify the magnetic bright spot. The magnetic basement is very important to research forming and evolvement of the basin, especially, it is a crucial parameter of exploring residual basin in the research on pre-Cenozoic residual. This paper put forward a new method to inverse the interface of the magnetic layer on the basis of previous work, that is the method of separation of magnetic field step by step. The theory of this method is to translate the result of magnetic layer fluctuation to the result of magnetization density change, and the magnetic layer is flat, the paper choose thickness of magnetic layer as unit thickness, and define magnetic layer as a unit-thickness layer in order to convenient calculation, at the same time, define the variational magnetization density as equivalent magnetic density. Then we translate the relation between magnetic field and layer fluctuation to the relation between magnetic field and equivalent magnetic density, then, we can obtain the layer fluctuation through calculating equivalent magnetic density. Contrast to conventional parker method, model experimentation and example checkout prove this method is effective. The merit of this method is to avoid flat result in a strongly fluctuant area because of using a uniform average depth, the result of this method is closer to the fact, and this method is to inverse equivalent magnetic density, then translate equivalent magnetic density to layer fluctuation, this lays a foundation to inverse variational magnetic density in the landscape orientation and portrait.
Resumo:
The most widespread rock associations in the Western Block of North China Craton are khondalites distributed mainly in Jining, Liangcheng and Datong. A large quantitiy of garnet-bearing granites are contained in the khondalites. A great deal of research has been carried out on them by previous researchers. Studies of these garnet-bearing granites consist essentially of structural characteristics, petrography and geochemistry, and finally geochronological determinations. Summing up these researches, it will not be difficult to see that all of these authors have regarded these large numbers of garnets (up to 20%) contained in granites as crystallized products from magmas, but they have not proved this from petrological perspective. Theoretically, there are possibly three kinds of petrogenesis as to these garnets. The first one is that they have been transferred to the granites from khondalites by melt when anatexis happened to khondalites, and they, in essence, are residual metamorphic garnets; The second one is that when the khondalites were being melted, these garnets were produced from biotite dehydration melting, and the newly formed garnets intruded together with the melt and eventually molded the garnet-bearing granites. Garnets of this possible kind either showed independent crystals, or garnets from khondalites took place secondary growth under favorable temperature and pressure conditions for their crystallization; The last possibility is that these garnets were crystallized from magmas in which suitable pressure, temperature and composition were available. These garnets, generally, should be fine-grained. The aim of this study is, through examining the mineral chemistry of the garnets and the whole rock chemistry, to ascertain under which kind of mechanism, in the world, did these garnets form? Besides, we try to calculate the temperatures under which khondalites began melting and reactions of the garnets and the cooled melts happened by garnet-biotite thermometry. The whole rock chemistry analyses of the garnet-bearing granites tell us that all the samples are strongly peraluminous (A/CNK greater than 1.1) on the A/NK vs. A/CNK plot. On the SiO2-K2O plot, the granites are mainly constrained to be high-K calc-alkaline and calc-alkaline series, consistent with previous researches. On the ACF((Al2O3-Na2O-K2O)-FeO(T)-CaO) discrimination plot, all the six garnet-bearing granite samples drop into the area of S-type granites. The relationship between CaO/Na2O and SiO2 shows that the overwhelming majority of garnet-bearing granites have a CaO/Na2O value over 0.3, revealing that they probably come from metagreywacke precursors or mediate-felsic orthogeneisses compositionally similar to them. Detailed EPMA analyses conducted on the garnets contained in the garnet-bearing granites show that all the garnets are dominated by almandine and pyrope, which occupy 92-96% (Weight Percentage) of each garnet analyzed, typical of granulite facies. Their chemical composition is entirely different from those crystallized in magmas, but extremely similar to those of typical granulite facies metapelites in khondalites and typical granulites, indicating all the garnets to be metamorphogenic. In addition, REEs distribution patterns of the garnets are totally different from typical biotite granites and peraluminous granites. In other words, both LREE and HREE of our garnets are evidently lower than those from these two kinds of rocks. Moreover, compared to the REE pattern of the garnets from typical amphibolites, LREE content of our garnets is obviously higher and HREE content is a little lower. However, REE patterns of our garnets are completely in harmony with those of garnets from typical granulites. So, the REE patterns of garnets, again, prove that all the garnets we studied are metamorphogenic. Biotites appear in two forms, being as inclusions in the garnet and as selvages immediately adjacent to the garnet, respectively. Two reactions and their corresponding temperatures, with the help of petrography and Garnet-Biotite geothermometers, could be obtained, which are Bt+ Pl+ Qtz→Kfs+ Opx+ Grt+ melt as positive reaction and Kfs+ Grt+ melt→Bt+ Pl+ Qtz as reverse reaction, respectively. Summing up the discussion above, we declare that the garnet-bearing granites distributed in the Western Block of North China Craton are the mixture of melts and restites resulted from biotite dehydration melting. The garnets contained in the restites are the products from biotite dehydration melting and restites from the khondalites, respectively.
Resumo:
On the issue of geological hazard evaluation(GHE), taking remote sensing and GIS systems as experimental environment, assisting with some programming development, this thesis combines multi-knowledges of geo-hazard mechanism, statistic learning, remote sensing (RS), high-spectral recognition, spatial analysis, digital photogrammetry as well as mineralogy, and selects geo-hazard samples from Hong Kong and Three Parallel River region as experimental data, to study two kinds of core questions of GHE, geo-hazard information acquiring and evaluation model. In the aspect of landslide information acquiring by RS, three detailed topics are presented, image enhance for visual interpretation, automatic recognition of landslide as well as quantitative mineral mapping. As to the evaluation model, the latest and powerful data mining method, support vector machine (SVM), is introduced to GHE field, and a serious of comparing experiments are carried out to verify its feasibility and efficiency. Furthermore, this paper proposes a method to forecast the distribution of landslides if rainfall in future is known baseing on historical rainfall and corresponding landslide susceptibility map. The details are as following: (a) Remote sensing image enhancing methods for geo-hazard visual interpretation. The effect of visual interpretation is determined by RS data and image enhancing method, for which the most effective and regular technique is image merge between high-spatial image and multi-spectral image, but there are few researches concerning the merging methods of geo-hazard recognition. By the comparing experimental of six mainstream merging methods and combination of different remote sensing data source, this thesis presents merits of each method ,and qualitatively analyzes the effect of spatial resolution, spectral resolution and time phase on merging image. (b) Automatic recognition of shallow landslide by RS image. The inventory of landslide is the base of landslide forecast and landslide study. If persistent collecting of landslide events, updating the geo-hazard inventory in time, and promoting prediction model incessantly, the accuracy of forecast would be boosted step by step. RS technique is a feasible method to obtain landslide information, which is determined by the feature of geo-hazard distribution. An automatic hierarchical approach is proposed to identify shallow landslides in vegetable region by the combination of multi-spectral RS imagery and DEM derivatives, and the experiment is also drilled to inspect its efficiency. (c) Hazard-causing factors obtaining. Accurate environmental factors are the key to analyze and predict the risk of regional geological hazard. As to predict huge debris flow, the main challenge is still to determine the startup material and its volume in debris flow source region. Exerting the merits of various RS technique, this thesis presents the methods to obtain two important hazard-causing factors, DEM and alteration mineral, and through spatial analysis, finds the relationship between hydrothermal clay alteration minerals and geo-hazards in the arid-hot valleys of Three Parallel Rivers region. (d) Applying support vector machine (SVM) to landslide susceptibility mapping. Introduce the latest and powerful statistical learning theory, SVM, to RGHE. SVM that proved an efficient statistic learning method can deal with two-class and one-class samples, with feature avoiding produce ‘pseudo’ samples. 55 years historical samples in a natural terrain of Hong Kong are used to assess this method, whose susceptibility maps obtained by one-class SVM and two-class SVM are compared to that obtained by logistic regression method. It can conclude that two-class SVM possesses better prediction efficiency than logistic regression and one-class SVM. However, one-class SVM, only requires failed cases, has an advantage over the other two methods as only "failed" case information is usually available in landslide susceptibility mapping. (e) Predicting the distribution of rainfall-induced landslides by time-series analysis. Rainfall is the most dominating factor to bring in landslides. More than 90% losing and casualty by landslides is introduced by rainfall, so predicting landslide sites under certain rainfall is an important geological evaluating issue. With full considering the contribution of stable factors (landslide susceptibility map) and dynamic factors (rainfall), the time-series linear regression analysis between rainfall and landslide risk mapis presented, and experiments based on true samples prove that this method is perfect in natural region of Hong Kong. The following 4 practicable or original findings are obtained: 1) The RS ways to enhance geo-hazards image, automatic recognize shallow landslides, obtain DEM and mineral are studied, and the detailed operating steps are given through examples. The conclusion is practical strongly. 2) The explorative researching about relationship between geo-hazards and alteration mineral in arid-hot valley of Jinshajiang river is presented. Based on standard USGS mineral spectrum, the distribution of hydrothermal alteration mineral is mapped by SAM method. Through statistic analysis between debris flows and hazard-causing factors, the strong correlation between debris flows and clay minerals is found and validated. 3) Applying SVM theory (especially one-class SVM theory) to the landslide susceptibility mapping and system evaluation for its performance is also carried out, which proves that advantages of SVM in this field. 4) Establishing time-serial prediction method for rainfall induced landslide distribution. In a natural study area, the distribution of landslides induced by a storm is predicted successfully under a real maximum 24h rainfall based on the regression between 4 historical storms and corresponding landslides.
Resumo:
Nowadays, with the development of reservoir exploration, the method of exploration is growing. Together with well information and laboratory results, seismic information with high quality can predict reservoir successfully. Hydrocarbon Indicator is a method, which picks the most sensitive rock properties of hydrocarbons, scans the aim area with rock physics tools, and then indicates the area of reservoir. Obviously, the more is the difference between brine and oil/gas, the better this method works. Which parameter can be used as the Optimal Hydrocarbon Indicators is still in discussion. The author introduced several kinds of Hydrocarbon Indicators in this thesis. After analyzing the response of different parameter to reservoir, together with seismic information, the reservoir can be predicted. In this paper, the reservoir of Zhunge’er is studied to prove this kind of method is suitable for real exploration in China. Besides, the author chose Haila’er reservoir to testify whether this method could be used in metamorphic reservoir other than sandstone reservoir. The results highlighted the meaning of Optimal Hydrocarbon Indicators on reservoir identification. The author also mentioned some thoughts for the development of hydrocarbon indicators in the future.
Resumo:
In this paper, we propose a new numerical modeling method – Convolutional Forsyte Polynomial Differentiator (CFPD), aimed at simulating seismic wave propagation in complex media with high efficiency and accuracy individually owned by short-scheme finite differentiator and general convolutional polynomial method. By adjusting the operator length and optimizing the operator coefficient, both global and local informations can be easily incorporated into the wavefield which is important to invert the undersurface geological structure. The key issue in this paper is to introduce the convolutional differentiator based on Forsyte generalized orthogonal polynomial in mathematics into the spatial differentiation of the first velocity-stress equation. To match the high accuracy of the spatial differentiator, this method in the time coordinate adopts staggered grid finite difference instead of conventional finite difference to model seismic wave propagation in heterogeneous media. To attenuate the reflection artifacts caused by artificial boundary, Perfectly Matched Layer (PML) absorbing boundary is also being considered in the method to deal with boundary problem due to its advantage of automatically handling large-angle emission. The PML formula for acoustic equation and first-order velocity-stress equation are also derived in this paper. There is little difference to implement the PML boundary condition in all kind of wave equations, but in Biot media, special attenuation factors should be taken. Numerical results demonstrate that the PML boundary condition is better than Cerjan absorbing boundary condition which makes it more suitable to hand the artificial boundary reflection. Based on the theories of anisotropy, Biot two-phase media and viscous-elasticity, this paper constructs the constitutive relationship for viscous-elastic and two-phase media, and further derives the first-order velocity-stress equation for 3D viscous-elastic and two-phase media. Numerical modeling using CFPD method is carried out in the above-mentioned media. The results modeled in the viscous-elastic media and the anisotropic pore elastic media can better explain wave phenomena of the true earth media, and can also prove that CFPD is a useful numerical tool to study the wave propagation in complex media.
Resumo:
The central-south Tibet is a part of the products of the continental plate collision between Eurasia and India. To study the deep structure of the study area is significant for understanding the dynamics of the continental-continental collision. A 3-D density model matched well with the observations in the central-south Tibet was proposed in this study. In addition, this study has also used numerical simulation method to prove that Quasi-Love (QL) wave is deduced by anisotropy variation but not by lateral heterogeneity. Meanwhile, anisotropy variation in the upper mantle of the Qiangtang terrane and Lhasa terrane is detected by the QL waves observed in recorded seismograms. Based on the gravity modeling, some results are summarized as follows: 1) Under the constrain of geometrical structure detected by seismic data, a 3-D density model and Moho interface are proposed by gravity inversion of the central-south Tibet. 2) The fact that the lower crustal densities are smaller than 3.2 g/cm3, suggests absence of eclogite or partial eclogitization due to delamination under the central-south Tibet. 3) Seismicity will be strong or weak in the most negative Bouguer gravity anomaly. So there is no a certain relationship between seismicity and Bouguer gravity anomaly. 4) Crustal composition are determined after temperature-pressure calibration of seismic P wave velocity. The composition of lower crust might be one or a mixture of: 1. amphibolite and greenschist facies basalt beneath the Qiangtang terrane; 2. gabbro-norite-troctolite and mafic granulite beneath the Lhasa terrane. Because the composition of the middle crust cannot be well constrained by the above data set, the data set published by Rudnick & Fountain (1995) is used for comparison. It indicated the composition of the middle crust is granulite facies and might be pelitic gneisses.Granulite facies used to be interpreted as residues of partial melting, which coincidences with the previous study on partial melting middle crust. Amphibolite facies are thought to be produced after delamination, when underplating works in the rebound of the lower crust and lithospheric mantle. From the seismology study, I have made several followed conclusions: 1) Through the numerical simulation experiment of surface wave propagating in heterogeneity media, we can find that amplitude and polarization of surface wave only change a little when considering heterogeneity. Furthermore, it is proved that QL waves, generated by surface wave scattering, are caused by lateral variation of anisotropy but not by heterogeneity. 2) QL waves are utilized to determine the variation of uppermost mantle anisotropy of the Tibetan plateau. QL waves are identified from the seismograms of the selected paths recorded by the CAD station. The location of azimuth anisotropy gradient is estimated from the group velocities of Rayleigh wave, Love wave and QL wave. It suggests that south-north lateral variation of azimuthal anisotropy locates in Tanggula mountain, and east-west lateral variation in the north of Gandese mountain with 85°E longitude and near the Jinsha river fault with 85°E longitude.
Resumo:
The real earth is far away from an ideal elastic ball. The movement of structures or fluid and scattering of thin-layer would inevitably affect seismic wave propagation, which is demonstrated mainly as energy nongeometrical attenuation. Today, most of theoretical researches and applications take the assumption that all media studied are fully elastic. Ignoring the viscoelastic property would, in some circumstances, lead to amplitude and phase distortion, which will indirectly affect extraction of traveltime and waveform we use in imaging and inversion. In order to investigate the response of seismic wave propagation and improve the imaging and inversion quality in complex media, we need not only consider into attenuation of the real media but also implement it by means of efficient numerical methods and imaging techniques. As for numerical modeling, most widely used methods, such as finite difference, finite element and pseudospectral algorithms, have difficulty in dealing with problem of simultaneously improving accuracy and efficiency in computation. To partially overcome this difficulty, this paper devises a matrix differentiator method and an optimal convolutional differentiator method based on staggered-grid Fourier pseudospectral differentiation, and a staggered-grid optimal Shannon singular kernel convolutional differentiator by function distribution theory, which then are used to study seismic wave propagation in viscoelastic media. Results through comparisons and accuracy analysis demonstrate that optimal convolutional differentiator methods can solve well the incompatibility between accuracy and efficiency, and are almost twice more accurate than the same-length finite difference. They can efficiently reduce dispersion and provide high-precision waveform data. On the basis of frequency-domain wavefield modeling, we discuss how to directly solve linear equations and point out that when compared to the time-domain methods, frequency-domain methods would be more convenient to handle the multi-source problem and be much easier to incorporate medium attenuation. We also prove the equivalence of the time- and frequency-domain methods by using numerical tests when assumptions with non-relaxation modulus and quality factor are made, and analyze the reason that causes waveform difference. In frequency-domain waveform inversion, experiments have been conducted with transmission, crosshole and reflection data. By using the relation between media scales and characteristic frequencies, we analyze the capacity of the frequency-domain sequential inversion method in anti-noising and dealing with non-uniqueness of nonlinear optimization. In crosshole experiments, we find the main sources of inversion error and figure out how incorrect quality factor would affect inverted results. When dealing with surface reflection data, several frequencies have been chosen with optimal frequency selection strategy, with which we use to carry out sequential and simultaneous inversions to verify how important low frequency data are to the inverted results and the functionality of simultaneous inversion in anti-noising. Finally, I come with some conclusions about the whole work I have done in this dissertation and discuss detailly the existing and would-be problems in it. I also point out the possible directions and theories we should go and deepen, which, to some extent, would provide a helpful reference to researchers who are interested in seismic wave propagation and imaging in complex media.
Resumo:
In this paper a systematic study of radiolarian from surface sediments of all the South China Sea (SCS) has initially been done for its deposit ecology, biogeography and paleoenvironment significance. The paleoenvironment information obtained by radiolarian analysis and other sedimentary method for core samples is also made use as the synthesis proxy for revealing the paleoenvironment changes in the SCS and the relations of it with the past globe change during last 200ka. Some results come out of this study as: 1) Radiolarian skeleton chemistry composition and skeleton morphological features were analyzed, chiefly dividing them as 15 types of basic morphological features: 2) Analysis of biogeographical feature demonstrates that the fauna in SCS obviously belonging to a transitional type of west Pacific - Indian Ocean and has a particularity of itself: 3) Tendency of radiolarian population distribution is lower in shallow continental shelf area, increasing gradually toward the abyssal region; 4) Nine character boundaries of radiolarian depth distribution in the sediments from whole the South China Sea may be recognized; 5)Two radiolarian transfer functions for paleotemperature and paleo-primary productivity in the South China Sea have also been established respectively. The equation of transfer function for winter paleotemperature has only an average estimated error of 0.18678 ℃ and the equation for paleo-primary productivity has the calculation accuracy of 85.31%; 6) Changes of radiolarian individuals, numbers of species and H(S) values in core NS93-5 show the completely different oceanic geographical circumstance and ecology structure in the Last Maximum Glacial with present; 7) The abundance variation of some raiolarian warm species and cold species indicate the changes of water masse features along with the paleoenvironment evolution, showing that this sea area clearly is controlled in 6 issues of oxygen isotopes by the cold water masses; 8) By comparative analysis of δ ~(18)O curves with GISP2;s ice core can core 17940 of the northern SCS, the occurring characters of D/O's events 1-21 and Heinrich's events H1-H6 have been revealed in this sea area by core NS93-5, which prove the existence of paleoclimatic tele-connections between the southern SCS and Arctic region since about 200ka BP.