120 resultados para Post-Light™ Ion Semiconductor Sequencing
Resumo:
Slow-light effects in photonic crystal (PC) waveguides can enhance light-mater interaction near the photonic band edge, which can be used to design a short cavity length semiconductor optical amplifier (SOA). In this paper, a novel SOA based on slow-light effects in PC waveguides (PCSOA) is presented. To realize the amplification of the optical signal with polarization independence, a PCSOA is designed with a compensated structure. The cascaded structure leads to a balanced amplification to the TE and TM polarized light.
Resumo:
Carbon ion radiotherapy/Fractionated irradiation/R-BE/Premature terminal differentiation. To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated With 250 kV X-rays, or 266 MeV/u, 195 MeV/u and I I MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The RBE10 values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is I for both single and two fractionated irradiation of NHDF cells. Using I I MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE10 for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region. RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions.
Resumo:
Amorphous SiO2 thin films with about 400-500 nm in thickness were thermally grown on single crystalline silicon. These SiO2/Si samples were firstly implanted at room temperature (RT) with 100 keV carbon ions to 2.0 x 10(17),5.0 X 10(17) or 1.2 x 10(18) ions/cm(2), then irradiated at RT by 853 MeV Pb ions to 5.0 x 10(11), 1.0 X.10(12) 2.0 x 10(12) or 5.0 x 10(12) ions/cm(2), respectively. The variation of photoluminescence (PL) properties of these samples was analyzed at RT using a fluorescent spectroscopy. The obtained results showed that Pb-ion irradiations led to significant changes of the PL properties of the carbon ion implanted SiO2 films. For examples, 5.0 x 10(12) Pb-ions/cm(2) irradiation produced huge blue and green light-emitters in 2.0 x 10(17) C-ions/cm(2) implanted samples, which resulted in the appearance of two intense PL peaks at about 2.64 and 2.19 eV. For 5.0 x 10(17) carbon-ions/cm(2) implanted samples, 2.0 x 10(12) Pb-ions/cm(2) irradiation could induce the formation of a strong and wide violet band at about 2.90 eV, whereas 5.0 x 10(12) Pb-ionS/cm(2) irradiation could,create double peaks of light emissions at about 2.23 and 2.83 eV. There is no observable PL peak in the 1.2 x 10(18) carbon-ions/cm(2) implanted samples whether it was irradiated with Pb ions or not. All these results implied that special light emitters could be achieved by using proper ion implantation and irradiation conditions, and it will be very useful for the synthesis of new type Of SiO2-based light-emission materials.
Resumo:
The charge stripping injection method has been adopted for the accumulation of light heavy ions in HIRFL-CSR. This method has some special requirements for the accelerating particles, and at the same time the structure of the injection orbit has to be changed. In this paper, the design of the orbit has been presented, as well as the calculation of the beam line matching. According to the result of commissioning, stripping injection can accumulate the beam to a higher current.
Resumo:
The Al atomic characteristic spectral lines were induced by the impact of Ar-40(q+) ions (8 <= q <= 16; kinetic energy 150 keV) on Al surface. The result shows that by Penning impinging and resonant capture, the ion energy is deposited on the Al surface to excite the target atom, which is different from light excitation. Not only are the transitions betweem electronic configurations of the atomic complex excited, but the enhancing tendency of the characteristic spectral line intensity is consistent with the enhancing tendency of the coulomb potential energy of the incident ions with increasing charged states.
Resumo:
Polycarbonate (PC) membranes were irradiated with swift heavy ions and latent tracks were created along the ions' trajectories. Nanopores, diameters between 100 and 500 nm, were obtained after illuminating the membranes with UV light and etching in NaOH solution. Silver nanowires were produced in the etched ion-track membranes by electrochemical deposition. The morphology and crystallinity of the silver nanowires were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Under certain conditions (deposition voltage 25 mV, current density 1-2 mA.cm(-2), temperature 50 degrees C, electrolyte 0.1 mol.L-1 AgNO3), single-crystalline silver nanowires with preferred orientation along the [111] direction can be synthesized.
Resumo:
Post-steam-treatment is a facile and effective method for improving the catalytic performances of Mo/HZSM-5 catalysts in methane dehydroaromatization under nonoxidative conditions. The treatment can enhance the stability of the catalyst and also give a higher methane conversion and a higher yield of light aromatics, as well as a decrease in the formation rate of carbonaceous deposits. (27)Al, (29)Si, and (1)H multinuclear magic angle spinning nuclear magnetic resonance, X-ray photoelectron spectroscopy, X-ray diffraction, X-ray fluorescence spectroscopy, and thermogravimetric analysis measurements as well as catalytic reaction evaluations were employed to conduct comparative studies on the properties of the catalysts before and after the post-steam-treatment. The results revealed that the number of free Bronsted acid sites per unit cell decreased, while more Mo species migrated into the HZSM-5 channels for the 6Mo/HZSM-5 catalysts after the post-steam-treatment. In addition, the average pore diameter was also larger for the post-steam-treated catalysts, and this was advantageous for mass transport of the reaction products. However, a severe post-steam-treatment, i.e., with longer treating time, of the 6Mo/HZSM-5 catalyst will lead to the formation of the Al(2)(MoO(4))(3) phases, which is detrimental to the reaction.
Resumo:
A method for calibration of an audio-frequency (AF) ion trap mass spectrometer is described. The method is proposed to surmount the obstacle that there is a lack of a proper calibrant for mass spectrometers in the mass-to-charge ratio (m/z) range of 10(6) to 10(10). To calibrate such mass spectra, we determine the point of ejection, q(eject), on the stability diagram of the ion trap operated in a mass-selective axial instability mode. This is accomplished by measuring the radial secular frequencies (and therefore, the m/z value) of a single trapped particle using a light scattering method, followed by monitoring the action of particle ejection in real time to obtain the q(eject). A delayed ejection with q(eject) = 0.949 +/- 0.004 is found at a trap driving frequency of Ohm/2pi = 200-600Hz. Theoretical analysis for the origin of the delayed ejection indicates that the delay is predominantly resulted from the existence of multipole components in the fields due to trap imperfections. Inclusion of -3% of the octopole with respect to the basic quadrupole field can satisfactorily account for our observations. An m/z accuracy approaching 0.1% is attainable after proper calibration of the AF ion trap mass spectrometer. (Int J Mass Spectrom 214 (2002) 63-73) (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We propose a simple but efficient, rapid, and quantitative ion-responsive micelle system based on counter-anion exchange of a surfactant with an imidazolium unit. The ion-exchange reaction results in the amphiphilic-to-hydrophobic transition of the imidazolium salt, leading to the destruction of the micelles, which has been successfully applied to control led release and emulsification.
Resumo:
A simple and efficient method for patterning polymeric semiconductors for applications in the field of organic electronics is proposed. The entire polymer layer, except for the desired pattern, is selectively lifted off from a flat poly(dimethylsiloxane) (PDMS) stamp surface by an epoxy mold with a relief pattern. This is advantageous because the elastic deformation of the PDMS stamp around protrusions of a patterned stamp under pressure can assist the plastic deformation of a polymer film along the pattern edges, yielding large area and high quality patterns, and the PDMS surface has low surface energy, which allows the easy removal of the polymer film.
Resumo:
Lead(IV) dioxide (PbO2) has been used as the electron injection layer (EIL) to realize high-efficiency inverted top-emitting organic light-emitting diodes (I-TOLEDs). It can be seen that the inserting of the PbO2 EIL significantly reduces operational voltage, thus greatly improving the current efficiency and power efficiency of fabricated I-TOLEDs. The 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one (C545T)-based I-TOLEDs with the PbO2 EIL exhibit a maximum current efficiency of 31.6 cd A(-1) and a maximum power efficiency of 14.3 lm W-1, which are both higher than 22.5 cd A(-1) and 5.4 lm W-1 of the I-TOLEDs with LiF as the EIL respectively. A detailed analysis with respect to the role mechanism of PbO2 in electron injection has been presented. The improvement in EL performance is attributed to the formation of the interfacial dipoles at the electrode interface due to charge transfer between PbO2 and Alq(3).
Resumo:
The velvet antler polypeptide CNT14 was extracted and purified by gel filtration, ion exchange chromatography and RP C, which showed a single peak in HPLC chromatography and a single band in SDS-PAGE. The molecular weight measured by MALDI/TOF/MS spectrum was 1479. 9028. The polypeptide consisted mostly of Glu, Leu, Val, Pro. The amino acid sequence of the polypeptide was detected with ESI-MS/ MS, and the sequence was E-P-T-V-L-D-E-V-C-L-A-H-G-P. The experiments of biological activity of polypeptide CNT14 in vivo were carried out, and the results show that CNT14 has stimulant effects on the growth of rat HT22 cells. Then we produced the polypeptide CNT14 according the amino acid sequence by solid phase synthesis, confirmed the sequence of the polypeptide to be consistent with the amino acid sequence of polypeptide CNT14 which was separated from the velvet antler.
Resumo:
We fabricated efficient top-emitting organic light-emitting diodes (OLEDs) with silver (Ag) as an anode and samarium (Sm) as a semi-transparent cathode. The hole-injection barrier at the Ag anode/hole transporter interface is reduced by inserting a buffer layer of vanadium oxide (V2O5) between them. The ultraviolet photoelectron spectroscopy analysis shows that the hole-injection barrier is reduced by 0.5 eV. Both the V2O5 thickness and the organic layer thickness are optimized. The optimized device achieves a maximum current efficiency of 5.46 cd A(-1) and a power efficiency of 3.90 lm W-1, respectively.