119 resultados para Photorefractive dynamic holograms
Resumo:
A method using two prisms for measurement of small dynamic angles is proposed in which the measurement is based on a simple tangent equation and a phase-modulating interferometer with a laser diode to measure dynamic optical path differences with higher accuracy. Owing to the simple tangent equation, the symmetry requirement on the two prisms in the optical configuration is eliminated, and easy measurement of the separations between two parallel beams with a position-sensitive detector is achieved. Small-dynamic-angle measurements are experimentally demonstrated with high accuracy. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Theoretical and experimental results are presented for simultaneous multibeam coupling in photorefractive SBN:Ce. Within a single crystal, multiple signals are amplified through a coupling process that employs a single pump. The coupling gain of each signal results from coupling both between the pump and the signal and between different signals. The amount of gain that each signal receives is dependent on the intensity of the incident signal; thus a competition for the gain exists among the various signals.
Resumo:
The photorefractive planar lens for converting a vertical incident plane wave to a lateral-spread spherical wave and vice versa, is suggested. Using the two-beam coupled-wave theory, the coupled wave equations are derived and their half-analytical solutions are also given in terms of an infinite series. The diffraction properties (beam profiles, diffraction efficiency) of the local volume grating in the lens are presented. And the focusing property of the lens is discussed and compared with that of an ideal convergent spherical wave. It is demonstrated that the suggested photorefractive planar lens shows a good focusing effect. (c) 2004 Elsevier GmbH. All rights reserved.
Resumo:
The absorption characteristic of lithium niobate crystals doped with chromium and copper (Cr and Cu) is investigated. We find that there are two apparent absorption bands for LiNbO3:Cr:Cu crystal doped with 0.14 wt.% Cr2O3 and 0.011 wt.% CuO; one is around 480 nm, and the other is around 660 nm. With a decrease in the doping composition of Cr and an increase in the doping composition of Cu, no apparent absorption band in the shorter wavelength range exists. The higher the doping level of Cr, the larger the absorbance around 660 nm. Although a 633 nm red light is located in the absorption band around 660 nm, the absorption at 633 nm does not help the photorefractive process; i.e., unlike other doubly doped crystals, for example, LiNbO3:Fe:Mn crystal, a nonvolatile holographic recording can be realized by a 633 nm red light as the recording light and a 390 nm UV light as the sensitizing light. For LiNbO3:Cr:Cu crystals, by changing the recording light from a 633 nm red light to a 514 nm green light, sensitizing with a 390 nm UV light and a 488 nm blue light, respectively, a nonvolatile holographic recording can be realized. Doping the appropriate Cr (for example, N-Cr = 2.795 X 10(25)m(-3) and N-Cr/N-Cu = 1) benefits the improvement of holographic recording properties. (c) 2005 Optical Society of America.
Resumo:
In LiNbO3:Fe, anomalous behaviour of grating erasure is observed with different wavelenghts, i.e. rapid grating erasure in the short wavelength range, which deviates from the results predicted by the electron transport band model. The deviation is related to the coexistance of electrons and holes in photorefraction, and charge-transfer process including electrons and hole has been proposed. The electron and hole contributions to photo-excitation coefficient S of the Fe centre on the wavelength.
Resumo:
In this paper the photorefractive sensitivity defined for single-centre holographic recording is modified to adapt two-centre holographic recording. Based on the time analytic solution of Kukhtarev equations for doubly doped crystals, the analytical expression of photorefractive sensitivity is given. For comparison with single-centre holographic recording and summing the electron competition effects between the deeper and shallower traps, an effective electron transport length is proposed, which varies with the intensity ratios of recording light to sensitive light. According to analyses in this paper, the lower photorefractive sensitivity in two-centre holographic recording is mainly due to the lower concentration of unionized dopants in the shallower centre and the lower effective electron transport length.
Resumo:
We have studied the anisotropic diffraction properties of the stratified volume holographic gratings recorded in photorefractive media using the anisotropic coupled wave theory. It is shown that the diffraction efficiency of such system exhibit the uniform periodic Bragg selectivity properties. In addition the dependence of the stratified volume holographic optical elements (SVHOEs) diffraction properties on the buffer-layer thickness, grating-layer thickness, number of modulation layers, and total thickness of system are discussed in detail. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
Dammann gratings are well known for their ability to generate arrays of Lmiform-intensity beams from an incoming monochromatic beam. We apply the even-numbered Dammann grating to achieve dynamic optical coupled technology. A 1 x N dynamic optical coupled system is developed by employing two complementary even-numbered Dammann gratings. With this system we can achieve a beam splitter and combiner as a switch between them according to the relative shift between the gratings. Also, this system is a preferable approach in integral packaging. More importantly, this device has the potential to be applied to the splitting of a large array, e.g., 8 x 16 array and 64 x 64 array, which is difficult to be realized with conventional splitting methods. We experimentally demonstrated a 1 x 8 coupler at the wavelength of 1550 nm. Furthermore we analyze the effects of the alignment errors between gratings and the wavelength-dependent error on efficiency and uniformity. The experimental results and the influence of alignment error and wavelength-dependent error are analyzed in detail. (c) 2006 Optical Society of America.
Resumo:
We present two novel 1XN dynamic optical couplers that are based on Dammann gratings to achieve dynamic optical coupled technology. One is presented by employing a specially designed Dammann grating that consists of the Dammann-grating area and the blank area. The other is developed by using two complementary even-numbered Dammann gratings. The couplers can achieve the function conversion between a beam splitter and a combiner according to the modulation of the gratings. We have experimentally demonstrated 1X8 dynamic optical couplers at the wavelength of 1550 nm. The experimental results and the analyses are reported in detail.
Resumo:
The quantitative phase-mapping of the domain nucleation in MgO:LiNbO3 crystals is presented by using the digital holographic interferometry. An unexpected peak phase at the beginning of the domain nucleation is observed and it is lowered as the spreading of the domain nucleus. The existence of the nucleus changes the moving speed of the domain wall by pinning it for 3s. Such in-situ quantitative analysis of the domain nucleation process is a key to optimizing domain structure fabrication.
Resumo:
A method using two prisms for measurement of small dynamic angles is proposed in which the measurement is based on a simple tangent equation and a phase-modulating interferometer with a laser diode to measure dynamic optical path differences with higher accuracy. Owing to the simple tangent equation, the symmetry requirement on the two prisms in the optical configuration is eliminated, and easy measurement of the separations between two parallel beams with a position-sensitive detector is achieved. Small-dynamic-angle measurements are experimentally demonstrated with high accuracy. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We propose a technique for dynamic full-range Fourier-domain optical coherence tomography by using sinusoidal phase-modulating interferometry, where both the full-range structural information and depth-resolved dynamic information are obtained. A novel frequency-domain filtering algorithm is proposed to reconstruct a time-dependent complex spectral interferogram from the sinusoidally phase-modulated interferogram detected with a high-rate CCD camera. By taking the amplitude and phase of the inverse Fourier transform of the complex spectral interferogram, a time-dependent full-range cross-sectional image and depth-resolved displacement are obtained. Displacement of a sinusoidally vibrating glass cover slip behind a fixed glass cover slip is measured with subwavelength sensitivity to demonstrate the depth-resolved dynamic imaging capability of our system. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
Anisotropic Bragg diffraction of finite-sized volume holographic grating in photorefractive crystals
Resumo:
Anisotropic diffraction of uniform plane wave by finite-sized volume holographic grating in photorefractive crystals is considered. It is found that the anisotropic diffraction can take place when some special conditions are satisfied. The diffracted image is obtained in experiment for the anisotropic Bragg diffraction in Fe:LiNbO3 crystals. A coupled wave analysis is presented to study the properties of anisotropic diffraction. An analytical integral solution for the amplitudes of the diffracted beams is submitted. A trade off between high diffraction efficiency and the deterioration of reconstruction fidelity is analyzed. Numerical evaluations also show that the finite-sized anisotropic volume grating exhibits strong angular and wavelength selectivity. All the results are useful for the optimizing design of VHOE based on finite-sized volume grating structures. (c) 2006 Elsevier GmbH. All rights reserved.