131 resultados para Particle Trajectory Computation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

基于进化算法提出了一种两层结构的空间飞行器编队重构的轨道规划算法,高层算法通过优化构型映射来优化编队的总燃耗,实现全局规划并确保飞行器之间保持一定的安全距离以避免相互碰撞;低层规划算法采用Chebyshev多项式逼近控制变量空间,为每颗飞行器规划满足约束条件的最优轨道。该方法充分利用了编队的分布式结构,由各飞行器并行实现各自的轨道规划,能有效解决大型编队的轨道规划问题。仿真结果表明了该方法的有效性。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boundary condition at the solid surface is one of the important problems for the microfluidics. In this paper we study the effects of the channel sizes on the boundary conditions (BC), using the hybrid computation scheme adjoining the molecular dynamics (MD) simulations and the continuum fluid mechanics. We could reproduce the three types of boundary conditions (slip, no-slip and locking) over the multiscale channel sizes. The slip lengths are found to be mainly dependent on the interfacial parameters with the fixed apparent shear rate. The channel size has little effects on the slip lengths if the size is above a critical value within a couple of tens of molecular diameters. We explore the liquid particle distributions nearest the solid walls and found that the slip boundary condition always corresponds to the uniform liquid particle distributions parallel to the solid walls, while the no-slip or locking boundary conditions correspond to the ordered liquid structures close to the solid walls. The slip, no-slip and locking interfacial parameters yield the positive, zero and negative slip lengths respectively. The three types of boundary conditions existing in "microscale" still occur in "macroscale". However, the slip lengths weakly dependent on the channel sizes yield the real shear rates and the slip velocity relative to the solid wall traveling speed approaching those with the no-slip boundary condition when the channel size is larger than thousands of liquid molecular diameters for all of the three types of interfacial parameters, leading to the quasi-no-slip boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Good agreements of the calculated excitation energies and fundamental energy gaps with the experimental band structures were achieved. We obtained the calculated fundamental gaps of Si and GaAs to be 1.22 and 1.42 eV in comparison to the experimental values of 1.17 and 1.52 eV, respectively. Ab initio pseudopotential method has been used to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have applied the Green-function method in the GW approximation to calculate quasiparticle energies for the semiconductors GaP and GaAs. Good agreement between the calculated excitation energies and the experimental results was achieved. We obtained calculated direct band gaps of GaP and GaAs of 2.93 and 1.42 eV, respectively, in comparison with the experimental values of 2.90 and 1.52 eV, respectively. An ab initio pseudopotential method has been used to generate basis wave functions and charge densities for calculating the dielectric matrix elements and self-enegies. To evaluate the dynamical effects of the screened interaction, the generalized-plasma-pole model has been utilized to extend the dielectric matrix elements from static results to finite frequencies. We presen the calculated quasiparticle energies at various high-symmetry points of the Brillouin zone and compare them with the experimental results and other calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two kinds of quantum computation systems using artificial molecules: quantum computer and quantum analog computer are described. The artificial molecule consists of two or three coupled quantum dots stacked along z direction and one single electron, In quantum computer, one-qubit and two-qubit gates are constructed by one molecule and two molecules, respectively. The coupling between two qubits in a quantum gate can be controlled by thin film electrodes. We also constructed a quantum analog computer by designing a three-dot molecule network and mapping a graph 3-colorability problem onto the network. The ground-state configuration of the single electrons in the network corresponds to one of the problem solutions, We numerically study the operations of the two kinds of the quantum computers and demonstrate that they quantum gates can perform the quantum computation and solve complex problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel analog-computation system using a quantum-dot cell network is proposed to solve complex problems. Analog computation is a promising method for solving a mathematical problem by using a physical system analogous to the problem. We designed a novel quantum-dot cell consisting of three-stacked. quantum dots and constructed a cell network utilizing the nearest-neighbor interactions between the cells. We then mapped a graph 3-colorability problem onto the network so that the single-electron configuration of the network in the ground state corresponded to one of the solutions. We calculated the ground state of the cell network and found solutions to the problems. The results demonstrate that analog computation is a promising approach for solving complex problems.