220 resultados para Parametric resonance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that transmission and reflection group delay times in an asymmetric single quantum barrier are greatly enhanced by the transmission resonance when the energy of incident particles is larger than the height of the barrier. The resonant transmission group delay is of the order of the quasibound state lifetime in the barrier region. The reflection group delay can be either positive or negative, depending on the relative height of the potential energies on the two sides of the barrier. Its magnitude is much larger than the quasibound state lifetime. These predictions have been observed in microwave experiments. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles. spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for beta-barium borate OPCPA with type-1 noncollinear angularly dispersed geometry. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solutions for fiber-optical parametric amplifiers (FOPAs) with dispersion fluctuations are derived using matrix operators. On the basis of the propagation matrix product and the hybrid genetic algorithm, we have optimized and compared single- and dual-pump FOPAs with zero-dispersion-wavelength variations. The simulations prove that the design of FOPAs involves multimodal function optimization problems. The numerical results show that dual-pump FOPAs are highly sensitive to dispersion fluctuations whereas dispersion variations have less impact on the gain of single-pump FOPAs. To increase signal gain and reduce ripple, dual-pump FOPAs, instead of single-pump FOPAs, have to be carefully optimized with a suitable multisegment fiber structure rather than a one-segment fiber structure. The different combinations of multisegment fibers can provide highly different gain properties. The increase in gain is at the cost of the ripple.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigations of nondegenerate ultrabroadband chirped pulse optical parametric amplification have been carried out. The general mathematical expressions for evaluating parametric bandwidth, gain and gain bandwidth for arbitrary three-wave mixing parametric amplifiers are presented. In our experiments, a type-I noncollinear phase-matched optical parametric amplifier based on lithium triborate, which was pumped by a 5-ns second harmonic pulses from a Q-switched Nd:YAG operating at 10 Hz, seeded by a 14-fs Ti:sapphire laser at 800 nm, was presented. The 0.85 nJ energy of input chirped signal pulse with 57-FWHM has been amplified to 3.1 muJ at pump intensity 3 GW/cm(2), the corresponding parametric gain reached 3.6 x 10(3), the 53 nm-FWHM gain spectrum bandwidth of output signal has been obtained. The large gain and broad gain bandwidth, which have been confirmed experimentally, provide great potentials to amplify efficiently the broad bandwidth femtosecond light pulses to generate new extremes in power, intensity, and pulse duration using optical parametric chirped pulse amplifiers pumped by powerful nanosecond systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two coupled parametric four-wave-mixing processed in Rb atoms are studied using perturbation theory, which reveals clear evidence of the appearance of quantum beat at 608 cm(-1), corresponding to the energy difference of the 7s - 5d states of Rb atoms, in the parametric four-wave-mixing signals. A pump-probe technique is utilized to observe the quantum beat. Time-varying characteristics of the quantum beat are investigated using time-dependent Fourier transform. The results show that the time-varying characteristics of the quantum beat potential tool for monitoring the dissociation of molecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectral bandwidth of three-wave-mixing optical parametric amplification has been investigated. A general mathematical model for evaluating the spectral bandwidth of optical parametric amplification is developed with parametric bandwidth and gain bandwidth via three-wave noncollinear interactions. The spectral bandwidth is determined by expanding the wave-vector mismatch in a Taylor series and retaining terms through second order. The model takes into account the effects of crystal length, noncollinear angle, group velocity, group-velocity dispersion and gain coefficient. The relation between parametric bandwidth and gain bandwidth is clearly defined. The model is applied to a BBO OPA, a LBO OPA and a CLBO OPA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we investigate the mechanism of tunable parametric superfluorescence (PS) based on the second harmonic generation and parametric processes taking place in the same nonlinear crystal (BBO). The tunable spectra of PS has been generated between 480 nm and 530 nm, which is pumped by the second-harmonic from the high-power Ti: sapphire laser system at 1 kHz repetition rate. We present the generation mechanism of PS theoretically and simulate the process of PS ring using the amplification transfer function. The experiment and the theory show that PS will appear when the phase matching angle for second-harmonic generation is close to the optimal pump angle for optical parametric generation, and then the tunable spectra of PS are generated by slightly adjusting the crystal angle. The result provides a theoretical basis for controlling the generation of PS and quantum entanglement states, which is of great significance for the development of quantum imaging, quantum communications and other applieations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a LBO-based ultra-broadband chirped pulse optical parametric amplifier employing pulse-front-matching to yield transform-limited sub-12-fs pulses. Measurement of the maximum possible gain bandwidth for the LBO-based OPCPA demonstrates more than 60nm gain bandwidth FWHM. For the generation of TL pulses by the use of this OPCPA, a suitable combination of OPCPA and PFM is first presented. The PFM pump geometry realizes tilt-free signal amplification, and permits this OPCPA to generate TL sub-12-fs pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compact and efficient triple-pass optical parametric chirped pulse amplification in a single crystal has been demonstrated. The signal was triple-pass amplified in a single nonlinear crystal by a nanosecond pump pulse. The first-pass optical parametric amplification is completely phase matched in the plane of the maximum effective nonlinearity, and the other two passes work symmetrically near to the first-pass optical parametric amplification plane. This architecture efficiently increases the overall gain, overcomes the optical parametric fluorescence, and clearly simplifies the amplification scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stacking chirped pulse optical parametric amplification based on a home-built Yb(3+)-doped mode-locked fiber laser and an all-fiber pulse stacker has been demonstrated. Energic 11 mJ shaped pulses with pulse duration of 2.3 ns and a net total gain of higher than 1.1 x 10(7) at fluctuation less than 2% rms are achieved by optical parametric amplification pumped by a Q-switched Nd:YAG frequency-doubled laser, which provides a simple and efficient amplification scheme for temporally shaped pulses by stacking chirped pulse. (C) 2009 Elsevier B.V. All rights reserved.