306 resultados para POLYSTYRENE FOAMS
Resumo:
The glass transition temperature (T(g)) of cyclic polystyrene was measured by differential scanning calorimetry. There was a marked difference in the glass transition behaviour between cyclic and linear polystyrene. In the low molecular weight region (M(n) < 5 x 10(3)), the T(g) of the cyclic polystyrene increased with decreasing M(n), contrary to that of linear polystyrene. With M(n) higher than 5 x 10(3), the T(g) of cyclic polystyrene increased with increasing M(n). The T(g) of cyclic and linear polystyrene approached the same constant value when the M(n) was high enough (M(n) > 10(5)). Combining the results of specific volume, it is believed that the variation of T(g) with molecular weight does not depend only on free volume effects but that configurational entropy is also an important factor.
Resumo:
The morphology and mechanical behaviour of phenolphthalein poly(ether ether ketone) (PEK-C)/poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) blends has been investigated. A poly(ethylene oxide)-b-polystyrene-b-poly(ethylene oxide) (PEO-PS-PEO) triblock copolymer was used as compatibilizer. It was found that PEO-PS-PEO has a compatibilizing effect on the PEK-C/PPO blends. The addition of PEO-PS-PEO to the blends greatly improves phase dispersion and interfacial interfacial adhesion and also enhances the ultimate tensile strength and Young's modulus at compositions ranging from 30 to 70% PEK-C. However, all the values of the ultimate tensile strength within the whole composition range are lower than those expected by simple additivity, probably owing to the poor mechanical properties of PEO-PS-PEO copolymer.
Resumo:
Using a low angle laser light scattering photometer (LALLS) the second virial coefficients(A_2) of ring-shaped and linear polystyrene (RPS and LPS) samples were determined in both toluene and butanone solutions. The A_2 of RPS in the good solvent (toluene) is smaller than that of LPS with the same molecular weight, but in the poor solvent (butanone) these two are very close. For RPS in the molecular weight range of 4×10~4——2.2×10~5, we haveA_(2r)=1.28×10~(-2)M_w~(-0.283) (Toluene 25℃) and A_(2r)=5.06×10~(-2...
Resumo:
The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions in studies on dynamic behaviour of a colloidal system. However, the associated changes in the solvent composition may bring side effects to the properties investigated and therefore might lead to a faulty conclusion if the relevant correction is not made. To illustrate the importance of this side effect, we present an example of the sedimentation influence on the coagulation rate of suspensions of 2 μm (diameter) polystyrene. The liquid mixtures, in the proper proportions of water (H2O), deuterium oxide (D2O) and methanol (MeOH) as the liquid phase, density-matched and unmatched experiments are performed. Besides the influence of viscosity, the presence of methanol in solvent media, used to enhance the sedimentation effect, causes significant changes (reduction) in rapid coagulation rates compared to that in pure water. Without the relevant corrections for those non-gravitational factors it seems that gravitational sedimentation would retard the coagulation. The magnitude of the contribution from the non-gravitational factor is quantitatively determined, making the relevant correction possible. After necessary corrections for all factors, our experiments show that the influence of the sedimentation on coagulation rates at the initial stage of the coagulation is not observable.
Resumo:
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80mm in inner diameter, 10mm in wall thickness and 5360mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients a and 0 are quantitatively determined.
Resumo:
We present an improved procedure on the approach to determine the stability of polystyrene spheres at microscopic particle levels by means of artificially induced particle collisions with the aid of optical tweezers [J.Chem.Phys. 119, 2399(2003)]. The basic consideration on this new development is that the major contribution to the sticking probability for a particle pair caught into the optical trap for a short period is from its single collision; therefore, if the trapping duration for the pair is taken to be short, the accumulated sticking probability will be a good approximation for the single collision. The experimental procedure associated with this approximation does not resort to exactly controlling the short trapping duration or request the trapping duration correction as previously reported and therefore it is more practical and applicable for broader range of the stability ratio. The experimental results under different electrolyte concentrations by the new procedure are consistent with those from the turbidity measurements.
Resumo:
A concise pressure controlled isothermal heating vertical deposition (PCIHVD) method is developed, which provides an optimal growing condition with better stability and reproducibility for fabricating photonic crystals (PCs) without the limitation of colloidal sphere materials and sizes. High quality PCs are fabricated with PCIHVD from polystyrene spheres with diameters ranging from 200 nm to 1 mu m. The deep photonic band gap and steep photonic band edge of the samples are most favorable for realizing ultrafast optical devices, photonic chips, and communications. This method makes a meaningful advance in the quality and diversity of PCs and greatly promotes their wide applications.
Resumo:
It was assumed [1, 2] that gravity affects the coagulation process in two ways: free convection, which is hard to be avoided on the ground and sedimentation, which can be greatly reduced by the density-matching method. We present a ground-based experiment set-up to study the influence of convection on the perikinetic coagulation for aqueous polystyrene (PS) dispersions. The turbidity measurement was used to evaluate the relative coagulation rate and convection-driven flows in the solution were checked with a visual-magnification system. The pattern of flow field temperature profile in the sample cell is given. Our experiments show that there was no noticeable difference of coagulation rate observed no matter whether convection flows exist (with the flow speed up to 180 mu m/s) or not.
Resumo:
The refractive indices of particles and dispersion medium are important parameters in many colloidal experiments using optical techniques, such as turbidity and light scattering measurements. These data are in general wavelength-dependent and may not be available at some wavelengths fitting to the experimental requirement. in this Study we present a novel approach to inversely determine the refractive indices of particles and dispersion medium by examining the consistency of measured extinction cross sections of particles with their theoretical values using a series of trial values of the refractive indices. The colloidal suspension of polystyrene particles dispersed in water was used as an example to demonstrate how this approach works and the data obtained via such a method are compared with those reported in literature, showing a good agreement between both. Furthermore, the factors that affect the accuracy of measurements are discussed. We also present some data of the refractive indices of polystyrene over a range of wavelengths smaller than 400 nm that have been not reported in the available literature. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Colloidal crystals formed by two types of polystyrene particles of different sizes (94 and 141 nm) at various number ratios (94:141 nm) are studied. Experiments showed that the formation time of crystals lengthens as the number ratio of the two components approaches 1:1. The dependence of the mean interparticle distance (D-0), crystal structure and alloy structure on the number ratio of the two types of particles was Studied by means of Kossel diffraction technique and reflection spectra. The results showed that as the number ratio decreased, the mean interparticle distance (D-0) became larger. And the colloidal crystal in binary mixtures is more preferably to form the bcc structure. This study found that binary systems form the substitutional solid solution (sss)-type alloy structure in all cases except when the number ratio of two types of particles is 5:1, which results instead in the superlattice structure. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The template-directed fabrication of highly-ordered porous film is of significant importance in implementation of the photonic band gap structure. The paper reports a simple and effective method to improve the electrodeposition of metal porous film by utilizing highly-ordered polystyrene spheres (PSs) template. By surface-modification method, the hydrophobic property of the PSs template surfaces was changed into hydrophilic one. It was demonstrated that the surface modi. cation process enhanced the permeability of the electrolyte solution in the nanometer-sized voids of the colloidal template. The homogeneously deposited copper film with the highly-ordered voids in size of less than 500 nm was successfully obtained. In addition, it was found that large defects, such as microcracks in the template, strongly influenced the macroporous films quality. An obvious preferential growth in the cracked area was observed. (C) 2008 Elsevier B. V. All rights reserved.