333 resultados para POLYPROPYLENE BLENDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The final structure of molten syndiotactic polypropylene (sPP) sheared under different conditions was investigated by synchrotron small-angle x-ray scattering (SAXS) and wide-angle x-ray diffraction (WAXD) techniques to elucidate the shear effects on sPP crystalline structure. The results obtained from the WAXD show that there is no variation on crystalline form but a little difference on the orientation of the 200 reflection. The SAXS data indicate that the lamellar thickness and long period have not been affected by shear but the lamellar orientation is dependent on shear. The experimental data of sPP crystallization from sheared melt may indicate a mesophase structure that is crucial to the shear effects on the final polymer multiscale crystalline structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the interplay between microphase assembly and macrophase separation in A/B/AB ternary polymer blends by examining the free energy of localized fluctuation structures (micelles or droplets), with emphasis on the thermodynamic relationship between swollen micelles (microemulsion) and the macrophase-separated state, using self-consistent field theory and an extended capillary model. Upon introducing homopolymer B into a micelle-forming binary polymer blend A/AB, micelles can be swollen by B. A small amount of component B (below the A-rich binodal of macrophase coexistence) will not affect the stability of the swollen micelles. A large excess of homopolymer, B, will induce a microemulsion failure and lead to a macrophase separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of T-g by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPs content, the elongation at break and impact strength were increased. The elongation at break increased from 5% of neat PLA to 25% of the blend PLA/ATPS40. It was found that the cold crystallization behavior of PLA changed evidently by addition of ATPS. The cold crystallization temperature(T-cc) of each of PLA/ATPS blends was found to shift to a lower temperature and the width of exothermic peak became narrow compared with that of neat PLA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructure and mechanical properties of beta-nucleated iPP before and after being annealed at different temperatures (90-160 degrees C) have been analyzed, Annealing induced different degrees of variation in fracture toughness of beta-nucleated iPP samples. namely, slight enhancement at relatively low annealing temperatures (< 110 degrees C) and great improvement at moderate temperatures (120-130 degrees C), whereas dramatic deterioration at relatively high temperatures ( > 140 degrees C) has been observed. The variation of fracture toughness of beta-nucleated iPP is observed to be dependent on the content of beta-NA. Experiments, including scanning electronic microscope (SEM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and dynamic mechanical analysis (DMA), are performed to study the variations of microstructures as well as the toughening mechanism of the beta-nucleated iPP after being annealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Styrene-b-(ethylene-co-1-butene)-b-styrene (SEBS) triblock copolymer functionalized with epsilon-caprolactam blocked allyl (3-isocyanate-4-tolyl) carbamate (SEBS-g-BTAI) was used to toughen polyamide 6 (PA6) via reactive blending. Compared to the PA6/SEBS blends, mechanical properties such as tensile strength, Young's modulus, especially Izod notched strength of PA6/SEBS-g-BTAI blends were improved distinctly. Both theological and FTIR results indicated a new copolymer formed by the reaction of end groups of PA6 and isocyanate group regenerated in the backbone of SEBS-g-BTAI. Smaller dispersed particle sizes with narrower distribution were found in PA6/SEBS-g-BTAI blends, via field emitted scanning electron microscopy (FESEM). The core-shell structures with PS core and PEB shell were also observed in the PA6/SEBS-g-BTAI blends via transmission electron microscopy (TEM), which might improve the toughening ability of the rubber particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epsilon-caprolactam was used to block the isocyanate group to enhance the storage stability of allyl (3-isocyanate-4-tolyl) carbamate. The spectra of FTIR and NMR showed that blocked allyl (3-isocyanate-4-tolyl) carbamate (BTAI) possesses two chemical functions, an 1-olefin double bond and a blocked isocyanate group. The FTIR spectrum showed BTAI could regenerate isocyanate group at elevated temperature. DSC and TG/DTA indicated the minimal dissociation temperature was about 135 degrees C and the maximal dissociation rate appeared at 226 degrees C. Then the styrene-b-(ethylene-co-1-butene)-b-styrene triblock copolymer (SEBS) was functionalized by BTAI via melt free radical grafting. The effect of temperature, monomer and initiator concentrations on the grafting degree and grafting efficiency was evaluated. The highest grafting degree was obtained at 200 degrees C. The grafting degree and grafting efficiency increased with the enhanced concentration of BTAI or initiator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reactive compatibilization of LLDPE/PS (50/50 wt%) was achieved by Friedel-Crafts alkylation reaction with a combined Lewis acids (Me3SiCl and InCl3 center dot 4H(2)O) as catalyst. The graft copolymer at the interface was characterized by Fourier transform infrared spectroscopy and the morphology of the blends was analysized by scanning electron microscopy. It was found that the combined Lewis acids had catalytic effect on Friedel-Crafts alkylation reaction between LLDPE and PS, and the catalytic effect was maximal when the molar ratio of InCl3 center dot 4H(2)O to Me3SiCl was 1:5. The graft copolymer LLDPE-g-PS was formed via the F-C reaction and worked as a tailor-made compatibilizer to reduce the interfacial tension. The mechanical properties of reactive blend with combined Lewis acids as catalyst was notably improved compared to that of physical LLDPE/PS blend and serious degradation had been decreased compared to the reactive blend system with AlCl3 as catalyst; we interpreted the above results in term of acidity of combined Lewis acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method in situ chlorinating-graft copolymerization (ISCGC) of grafting maleic anhydride (MAH) on isotactic polypropylene (iPP) in gas-solid phase was investigated in this paper. Chlorine (Cl-2) was used as initiator, chlorinating agent and termination agent at the same time during the reaction. The iPP was chlorinated as well as grafted with MAH in the reaction process. The product with chlorine and MAH in the same molecule was named as PP-cg-MAH. Existence of PP-cg-MAH was identified by Fourier transform infrared. Thermal behavior and crystallinity of PP-cg-MAH were analyzed by differential scanning calorimetry, X-ray diffraction and polarizing microscope. Influencing factors for the value of graft degree were also discussed. Compared with conventional peroxide initiated graft method, ISCGC revealed higher MAH graft efficiency (33%), and particularly alleviated degradation of iPP. iPP could be grafted successfully and without changing physical properties dramatically through this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear low density polyethylene (LLDPE) was functionalized with 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) by using -ray pre-irradiation in air in a twin-screw extruder. Fourier-transformed infrared spectroscopy (FT-IR) and electron spectroscopy for chemical analysis (ESCA) were used to characterize the formation of LLDPE-g-AMPS copolymers. The content of AMPS in LLDPE-g-AMPS was determined by using element analysis instrument. The effects of concentrations of monomer, reaction temperature and pre-irradiation dose on degree of grafting were investigated. The critical surface tension of LLDPE-g-AMPS was measured by using contact angle method. The influences of the degree of grafting on crystallization properties were studied by using DSC. Compared with neat LLDPE, the crystallization temperature increased about 4C, and crystallinity decreased with increasing degree of grafting. Crystallization rates of grafted LLDPE were faster than that of plain LLDPE at the same crystallization temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A notable amount of PP beta-crystal (30%, by X-ray diffraction pattern) has been found in the PP samples as polymerized at normal static isothermal crystallization conditions without using any extra nucleating agents. Existence of catalyst residues in the sample is decisive, which slows down the crystallization rate facilitating the formation of beta-form spherulites. Comparatively, high molecular weight PP favors the formation of beta-form spherulites, deducting from no beta-crystal detected in the degraded samples. Finally, high isotacticity is also required for obtaining qualitative beta-form spherulites, demonstrated by increased beta-crystal content after removal of weak crystalline fraction of the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhythmic growth of ring-banded spherulites in blends of liquid crystalline methoxy-poly(aryl ether ketone) (M-PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring-banded spherulites in the M-PAEK/PEEK blends is strongly dependent on the blend composition. In the M.-PAEK-rich blends, upon cooling, an unusual ring-banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M-PAEK/PEEK blend, ring-banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M-PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring-banded spherulite formation in the blends. In addition, the effects of M-PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of blend composition on morphology, order-disorder transition (ODT), and chain conformation of symmetric ABA/AB copolymer blends confined between two neutral hard walls have been investigated by lattice Monte Carlo simulation. Only lamellar structure is observed in all the simulation morphologies under thermodynamic equilibrium state, which is supported by theoretical prediction. When the composition of AB diblock copolymer (phi) increases, both lamellar spacing and the corresponding ODT temperature increase, which can be attributed to the variation of conformation distribution of the diblock and the triblock copolymer chains. In addition, both diblock and triblock copolymer, chains with bridge conformation extend dramatically in the direction parallel to the surface when the system is in ordered state. Finally, the copolymer chain conformation depends strongly on both the blend composition and the incompatibility parameter chi N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization behaviors of poly( E-caprolactone) (PCL) in poly(epsilon-caprolactone) (PCL) and poly(vinyl methyl ether) (PVME) blends were investigated by POM, DSC, WAXD, SAXS. POM results indicated that spherical crystal morphology was present during isothermal process, and the spheric growth rates were reduced with increasing the contents of PVME in PCL/PVME blends. It was found that the crystallinity of PCL in the blends remained almost constant regardless of the blend composition, but it was dependent on preparation technique. Solution-crystallization was found to be a technique capable of increasing crystallinity levels for some compositions. The melting behavior of the blends is a rather complex process. Both solution-crystallized samples and isothermal-crystallized samples exhibited a single endotherm. Oppositely, melting-crystallized samples exhibited dual-melting endotherms whose mangnitudes vary with blend compositions. On the basis of WAXD and SAXS experiments, it is found that the crystal structure is unchanged, but the long period increases with increasing the content of PVME because of the thickening of the amorphous layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.