245 resultados para POLYCRYSTALLINE PLATINUM-ELECTRODES
Resumo:
Preparation of monodispersed platinum nanoparticles with average size 2.0 nm stabilized by amino-terminated ionic liquid was demonstrated. The resulting platinum nanoparticles (Pt-IL) retained long-term stability without special protection. The Pt-IL nanoparticles exhibited high electrocatalytic activity toward reduction of oxygen and oxidation of methanol. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirmed that the Pt-IL films could catalyze an almost four-electron reduction of dioxygen to water.
Resumo:
The rational design, synthesis and characterization of five phosphorescent platinum complexes [(C boolean AND N) Pt(acac)] [Hacac = acetylacetone, HC boolean AND N = 1-methyl-2-(4-fluorophenyl)benzoimidazole (H-FMBI), 1-methyl-2-phenylbenzoimidazole (H-MBI), 1,2-diphenyl-benzoimidazole (H-PBI), 1-(4-(3,6-di-t-butylcarbazol-9-yl)) phenyl-2-phenylbenzoimidazole (t-BuCz-H-PBI), and 1-(4-(3,6-di-(3,6-di-t-butyl-carbazol-9-yl))carbazol-9-yl) phenyl-2-phenylbenzoimidazole (t-BuCzCz-H-PBI)] have been discussed. The crystal structure of (MBI) Pt(acac) shows a nearly ideal square planar geometry around Pt atom and the weak intermolecular interactions with pi-pi spacing of 3.55 angstrom. All of the complexes emit green phosphorescence from the metal-to-ligand charge-transfer (MLCT) excited state with high quantum efficiency (0.08-0.17) at room temperature.
Resumo:
Polycrystalline nanotubular Bi2Te3 could be prepared via a high-temperature solution process using nanoscale tellurium, decomposed from trioctylphosphine oxide (TOPO) extracted tellurium species (Te-TOPO), as sacrificial template. The formation of such tubular structure is believed to be the result of outward diffusion of Te during the alloying process. The electrical properties (Seebeck coefficient and electrical conductivity) of the polycrystalline nanotubular Bi2Te3 have been studied and the experimental results show that the electrical conductivity is approximately three orders of magnitude smaller than bulk bismuth telluride materials mainly due to the much larger resistance brought by the insufficient contact between the nanotubular structures.
Resumo:
A series of cyclometalating platinum(II) complexes with substituted 9-arylcarbazolyl chromophores have been synthesized and characterized. These complexes are thermally stable and most of them have been characterized by X-ray crystallography. The phosphorescence emissions of the complexes are dominated by (MLCT)-M-3 excited states. The excited state properties of these complexes can be modulated by varying the electronic characteristics of the cyclometalating ligands via substituent effects, thus allowing the emission to be tuned from bright green to yellow, orange and red light. The correlation between the functional properties of these metallophosphors and the results of density functional theory calculations was made. Because of the propensity of the electron-rich carbazolyl group to facilitate hole injection/transport, the presence of such moiety can increase the highest occupied molecular orbital levels and improve the charge balance in the resulting complexes relative to the parent platinum(II) phosphor with 2-phenylpyridine ligand.
Resumo:
The synthesis, thermal and emission properties of an electrophosphorescent platinum(II) metallopolyyne polymer consisting of 9-butylcarbazole-2,7-diyl spacer P1 are described. The optical and electronic properties of P1 are compared to their molecular diplatinum(II) and digold(I) model complexes. The photophysical properties of P1 are somehow analogous to its 2,7-fluorene-linked congener but differs significantly from that for the 3,6-carbazole derivative. Its optical band gap is notably reduced as compared to that for the 3,6-carbazole analog. Multi-layer polymer light-emitting diodes (PLEDs) were fabricated with P1 as the emitting layer which gave a strong green-yellow electrophosphorescence. The best PLED can reach the maximum current efficiency of 4.7 cd . A(-1) at 5 wt.-% doping level, corresponding to an external quantum efficiency of 1.5%. This represents the first literature example of efficient PLEDs exhibiting pure triplet emission under electrical excitation for metallopolyynes without the concomitant singlet emission.
Resumo:
Platinum nanoparticles (Pt NPs) were deposited onto multi-walled carbon nanotubes (MWNTs) through direct chemical reduction without any other stabilizing agents. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry were employed to characterize the morphology of the as-prepared nanocomposite (noted as Pt NPs-MWNTs) and further identify the Pt NPs on the surface of MWNTs. The nanocomposite demonstrated the ability to electrocatalyze the oxidation of hydrogen peroxide and substantially raises the response current. A sensitivity of 591.33 mu A mM(-1) cm(-2) was obtained at Pt NPs-MWNTs modified electrode. Thus, we immobilized glucose oxidase (GOD) as a model enzyme on the nanocomposite-based electrode with a thin layer of Nafion to fabricate a glucose biosensor, which showed sensitive and fast response to glucose. The influence of the GOD loading was investigated and the biosensor with an enzyme loading concentration of 10 mg/mL shows optimal performance for glucose detection, that is, a detection limit of 3 mu M and a response time of 3 s, respectively.
Resumo:
In the present work, platinum nanoparticles were prepared by in situ reduction with polyethylene glycols (PEGs). The catalytic performance of Pt nanoparticles immobilized in PEGs (Pt-PEGs) is discussed for the hydrogenation of o-chloronitrobenzene (o-CNB). A high selectivity to o-chloroaniline (o-CAN) of about 99.7% was obtained with the Pt-PEGs catalysts at the complete conversion of o-CNB, which is much higher than that (83.4%) obtained over the conventional catalyst of Pt/C. The Pt nanoparticies could be immobilized in PEGs stably and recycled for four times with the same activity and selectivity. It presents a promising performance in the hydrogenation and its wide application in catalytic reactions is expected.
Resumo:
By fusing an electron-deficient ring system with the phenyl ring of a 2-phenylpyridine (ppy)-type ligand, a new and synthetically versatile strategy for the phosphorescence color tuning of cyclometalated iridium(III) and platinum(II) metallophosphors has been established. Two robust red electrophosphors with enhanced electron-injection/electron-transporting features were prepared by using an electron-trapping fluoren-9-one chromophore in the ligand design. The thermal, photophysical, redox and electrophosphorescent properties of these complexes are reported. These exciting results can be attributed to a switch of the metal-to-ligand charge-transfer (MLCT) character of the transition from the pyridyl groups in the traditional Ir-III or Pt-II ppy-type complexes to the electron-deficient ring core, and the spectral assignments corroborate well with the electrochemical data as well as the timedependent density functional theory (TD-DFT) calculations. The electron-withdrawing character of the fused ring results in much more stable MLCT states, inducing a substantial red-shift of the triplet emission energy from yellow to red for the Ir-III complex and even green to red for the PtII counterpart.
Resumo:
Polyethyleneimine-functionalized platinum nanoparticles (PtNPs) with excellent electrochemiluminescence (ECL) properties were synthesized and applied to the amplified analysis of biomolecules. These particles were prepared at room temperature, with hyperbranched polyethyleneimine (HBPEI) as the stabilizer. The UV/Vis absorption spectra and transmission electron microscopy images clearly confirmed the formation of monodisperse PtNPs. Such particles proved to possess high stability against salt-induced aggregation, enabling them to be employed even under high-salt conditions. Owing to the existence of many tertiary amine groups, these particles exhibited excellent ECL behavior in the presence of tris(2.2'-bipyridyl)ruthenium(II). An HBPEI-coated particle possessed an ECL activity that was at least 60 times higher than that of a tripropylamine molecule. Furthermore, these particles could be immobilized on the 3-aminopropyltriethoxysilane-treated quartz substrates to amplify the binding sites for carboxyl groups. Through this approach, PtNPs were applied to the amplified analysis of the hemin/G-quadruplex DNAzyme by using the luminol/H2O2 chemiluminescence method.
Resumo:
A simple approach combining sonication and sol-gel chemistry was employed to synthesize silica coated carbon nanotube (CNTs) coaxial nanocables. It was found that a homogeneous silica layer can be coated on the surface of the CNTs. This method is simple, rapid, and reproducible. Furthermore, gold nanoparticle supported coaxial nanocables were facilely obtained using amino-functionalized silica as the interlinker. Furthermore, to reduce the cost of Pt in fuel cells, designing a Pt shell on the surface of a noble metal such as gold or silver is necessary. High-density gold/platinum hybrid nanoparticles were located on the surface of I-D coaxial nanocables with high surface-to-volume ratios. It was found that this hybrid nanomaterial exhibits a high electrocatalytic activity for enhancing oxygen reduction (low overpotential associated with the oxygen reduction reaction and almost four-electron electroreduction of dioxygen to water).
Resumo:
In this paper, we have explored a simple and new strategy to obtain quasimonodisperse Au/Pt hybrid nanoparticles (NPS) with urchinlike morphology and controlled size and Pt shell thickness. Through changing the molar ratios of Au to Pt, the Pt shell thickness of urchinlike Au/Pt hybrid NPs could be easily controlled; through changing the size of Au NPs (the size was easily controlled from similar to 3 to similar to 70 nm via simple heating of HAuCl4-citrate aqueous solution), the size of urchinlike Au/Pt hybrid NPs could be facilely dominated. It should be noted that heating the solution (100 degrees C) was very necessary for obtaining three-dimensional (3D) urchinlike nanostructures while H2PtCl6 was added to gold NPs aqueous solution in the presence of reductant (ascorbic acid). The electrocatalytic oxygen reduction reaction (ORR, a reaction greatly pursued by scientists in view of its important application in fuel cells) and the electron-transfer reaction between hexacyanoferrate(III) ions and thiosulfate ions of urchinlike Au/Pt hybrid NPs were investigated. It is found that the as-prepared urchinlike Au/Pt hybrid NPs exhibited higher catalytic activities than that of similar to Pt NPs with similar size.
Resumo:
A very simple and effective wet chemical route to direct synthesis of well-dispersed Pt nanoparticles with urchinlike morphology is proposed, which was carried out by simply mixing H2PtCl6 aqueous solution and poly(vinyl pyrrolidone) with the initial molar ratios of 1:3.5 kept constant at 30 degrees C for 3 days in the presence of formic acid. As-prepared urchinlike Pt nanostructures showed excellent electrocatalytic activity toward the reduction of dioxygen and oxidation of methanol and could be used as a promising nanoelectrocatalyst.
Resumo:
Gas bubble dynamic template, a new green and promising template, can be used to prepare nanostructured materials with different shapes from electrochemical deposition processes. Different morphological platinum nanomaterials have been synthesized by the replacement reaction of the deposited copper nanomaterials which were obtained under negative potential along with H-2 evolution (dynamic template) at a glassy carbon electrode. Scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and electrochemical methods were adopted to characterize their structures and properties. The nanomaterials platinum exhibited excellent catalytic activity toward oxygen reduction. The results demonstrated that the strategy is a simple, cost-effective, and potent method to prepare platinum nanomaterials.
Resumo:
Antioxidant amperometric sensors based on iron-containing complexes and protein modified electrodes were developed. Indium tin oxide glass was printed with TiO2 nanoparticles, onto which iron-containing compounds and protein were adsorbed. When applied with negative potentials, the dissolved oxygen is reduced to H2O2 at the electrode surface, and the H2O2 generated in situ oxidizes Fe-II to Fe-III, and then electrochemical reduction of Fe-III therefore gives rise to a catalytic current. In the presence of antioxidants, H2O2 was scavenged, the catalytic current was reduced, and the decreased current signal was proportional to the quantity of existing antioxidants. A kinetic model was proposed to quantify the H2O2 scavenging capacities of the antioxidants. With the use of the sensor developed here, antioxidant measurements can be done quite simply: put the sensor into the sample solutions (in aerobic atmosphere), perform a cathodic polarization scan, and then read the antioxidant activity values. The present work can be complementary to the previous studies of antioxidant sensor techniques based on OH radicals and superoxide ions scavenging methods, but the sensor developed here is much easier to fabricate and use.
Resumo:
Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H2PtCl6) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells.