148 resultados para POLYCRYSTALLINE PLATINUM
Resumo:
The reduction behaviors of the supported platinum-iron catalysts and their comparison with supported iron catalysts were studied by TPR (temperature-programmed reduction)-in situ Fe-57 MBS (Mossbauer spectroscopy). The results indicated that the TPR processes of all Fe-containing catalysts were different from that of bulk alpha-Fe2O3. There were interactions between Pt, Fe and the gamma-Al2O3 or SiO2 support for the Pt-Fe/gamma-Al2O3 and Pt-Fe/SiO2 catalysts. All the iron-containing catalysts show that Fe3+ was highly dispersed on the support (gamma-Al2O3 and SiO2) before reduction. No Fe-0 was found in the reduction processes. The Fe3+ was reduced to Fe2+ in tetrahedral vacancy first for the reduction of the Pt-Fe/gamma-Al2O3 catalyst. No Fe2+ in octahedral vacancy was found in the reduction of the Pt-Fe/SiO2 catalyst. Adding Pt to Fe/support (gamma-Al2O3 or SiO2) could promote the reduction of the Fe species. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Platinum utilization in the gas-diffusion catalyst layer and thin-film catalyst layer is investigated. The morphology of PTFE and Nafion in a simulated catalyst layer is examined by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM). The results show that the platinum utilization of the thin-film catalyst layer containing only Pt/C and Nafion is 45.4%. The low utilization is attributed to the fact that the electron conduction of many catalyst particles is impaired by some thick Nafion layers or clumps. For the gas-diffusion (E-TEK) electrode, the platinum utilization is mainly affected by the proton conduction provided by Nafion. The blocking effect of PTFE on the active sites is not serious. When the electrode is sufficiently impregnated with Nafion by an immersion method, the platinum utilization can reach 77.8%. Transmission electron micrographs reveal that although some thick Nafion layers and clumps are observed in the Pt/C + Nafion layer, the distribution of Nafion in the catalyst layer is basically uniform. The melted PTFE disperses in the catalyst layer very uniformly. No large PTFE clumps or wide net-like structure is observed. The reactant gas may have to diffuse evenly in the catalyst layer. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
We recently proposed a strain gradient theory to account for the size dependence of plastic deformation at micron and submicron length scales. The strain gradient theory includes the effects of both rotation gradient and stretch gradient such that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the stretch gradient measures explicitly enter the constitutive relations through the instantaneous tangent modulus. Indentation tests at scales on the order of one micron have shown that measured hardness increases significantly with decreasing indent size. In the present paper, the strain gradient theory is used to model materials undergoing small-scale indentations. A strong effect of including strain gradients in the constitutive description is found with hardness increasing by a factor of two or more over the relevant range behavior. Comparisons with the experimental data for polycrystalline copper and single crystal copper indeed show an approximately linear dependence of the square of the hardness, H 2, on the inverse of the indentation depth, 1/h, I.e., H-2 proportional to 1/h, which provides an important self-consistent check of the strain gradient theory proposed by the authors earlier.