390 resultados para POLY(N-VINYL-2-PYRROLIDONE)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A tyrosinase-based amperometric biosensor using a self-gelatinizable graft copolymer of poly(vinyl alcohol) with 4-vinylpyridine (PVA-g-PVP) as an immobilization matrix was constructed. The 4-vinylpyridine component of PVA-g-PVP enhances the adherence to a glassy carbon electrode surface. The content of 4-vinylpyridine in this immobilization matrix plays a key role in retaining the activity of tyrosinase. A simple, milder method was adopted by simply syringing the copolymer-tyrosinase aqueous solution on to the electrode surface and allowing water to evaporate at 4 degrees C in a refrigerator. Several parameters, including copolymer composition; pH, applied potential and enzyme membrane composition, ware optimized. The enzyme membrane composition can be varied to obtain higher sensitivity or a wider linear detection range. The biosensor was used for the determination of phenol, p-cresol and catechol. The biosensor exhibited excellent reproducibility, stability and sensitive response and can be used in flow injection analysis. The biosensor showed an extended linear range in hydrophilic organic solvents and it can be used in monitoring organic reaction processes. The analytical performance demonstrated this immobilization matrix is suitable for the immobilization of tyrosinase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonisothermal crystallization and melting behavior of poly(P-hydroxybutyrate) (PHB)-poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB-PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB-PVAc blends very well. The double-melting phenomenon is found to be caused by crystallization during heating in DSC. (C) 1999 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics and melting behavior of poly(beta-hydroxybutyrate) (PHB)/poly(vinyl acetate) (PVAc) blends were studied by using differential scanning calorimetry(DSC). The Avrami analysis indicates that the addition of PVAc into PHB results in the decrease in the overall crystallization rate of the PHB phase, but does not affect PHB's nucleation mechanism and geometry of crystal growth. The activation energy of the overall process of crystallization increases with the increasing PVAc content in the blends. The phenomenon of multiple melting endotherms is observed, which is caused by melting and recrystallization during the DSC heating run. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The compatibilizing effect and mechanism of compatibilization of the diblock copolymer polystyrene-block-poly(4-vinylpyridine) P(S-b-4VPy) on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO)/chlorinated polyethylene (CPE) were studied by means of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), mechanical properties and FTIR measurements. The block copolymer was synthesized by sequential anionic polymerization and melt-blended with PPO and CPE. The results show that the P(S-b-4VPy) added acts as an effective compatibilizer, located at the interface between the PPO and the CPE phase, reducing the interfacial tension, and improving the interfacial adhesion. The tensile strength and modulus of all blends increase with P(S-b-4VPy) content, whereas the elongation at break increases for PPO-rich blends, but decreases for CPE-rich blends. The polystyrene block of the diblock copolymer is compatible with PPO, and the poly(4-vinylpyridine) block and CPE are partially miscible.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Poly(vinyl acetate-co-vinyl alcohol) copolymers (P(VAc-co-VA)) were synthesized by hydrolysis-alcoholysis of PVAc. The miscibility, crystallization, and morphology of poly(P-hydroxybutyrate) (PHB) and P(VAc-co-VA) blends were studied by differential scanning calorimetry, optical microscopy (OM), and SAXS. It is found that the P(VAc-co-VA)s with vinyl alcohol content of 9, 15, and 22 mol % will form a miscible phase with the amorphous part of PHB in the solution-cast samples. The melting-quenched samples of PHB/P(VAc-co-VA) blends with different vinyl alcohol content show different phase behavior. PHB and P(VAc-co-VA9) with low vinyl alcohol content (9% mel) will form a miscible blend in the melt state. PHB and P(VAc-co-VA15) with 15 mol % vinyl alcohol will not form miscible blends while PHB/P(VAc-co-VA15) blend with 20/80 composition will form a partially miscible blend in the melt state. PHB and P(VAc-co-VA22) with 22 mol % vinyl alcohol are not miscible in the whole composition range. The single glass transition temperature of the blends within the whole composition range suggests that PHB and P(VAc-co-VA9) are totally miscible in the melt. The crystallization kinetics was studied from the whole crystallization and spherulite growth for the miscible blends. The equilibrium melting point of PHB in the PHB/P(VAc-co-VA9) blends, which was obtained from DSC results using the Hoffman-Weeks equation, decreases with the increase in P(VAc-co-VA9) content. The negative value of the interaction parameter determined from the equilibrium melting point depression supports the miscibility between the components. The kinetics of spherulitic crystallization of PHB in the blends was analyzed according to nucleation theory in the temperature range studied in this work. The best fit of the data to the kinetic theory is obtained by employing WLF parameters and the equilibrium melting points obtained by DSC. The addition of P(VAc-co-VA) did not affect the crystalline structure of PHB, as shown by the WAXD results. The long periods of blends obtained from SAXS increase with the increase in P(VAc-co-VA) content. It indicates that the amorphous P(VAc-co-VA) was rejected to interlamellar phase corporating with the amorphous part of PHB.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Flory solution theory modified by Hamada et al. (Macromolecules, 1980, 13, 729) was used to predict the miscibility of blends of poly(ethylene oxide) with poly(methyl methacrylate) (PEO-aPMMA) and with poly(vinyl acetate) (PEO-PVAc). Interaction parameters of a PEO-aPMMA blend with the weight ratio of PEO/aPMMA = 50/50 at the temperature range of 393-433 K and PEO-PVAc blends with different compositions and temperatures were calculated from the determined equation-of-state parameters based on Flory solution theory modified by Hamada ed al. Results show that interaction parameters of the PEO-aPMMA blend are negative and can be comparable with values obtained from neutron-scattering measurements by Ito et al. (Macromolecules, 1987, 20, 2213). Also, interaction parameters and excess volumes of PEO-PVAc blends are negative and increase with enhancing the content of PEO and the temperature. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The multilayer Langmuir-Blodgett (LB) films of pr,ly 3-(2-(5-chlorobenzotriazole)ethyl) thiophene (PCBET) blended with amphibious arachidic acid (AA) were prepared and characterized. The photoluminescence intensity of the blend film was enhanced as the AA increased by a certain amount. The PCBET excimers were not formed in the blend LB films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new blend of poly(2-hydroxyethyl methacrylate) (PHEMA) with poly (ethylene glycol) (PEG) was prepared. The results from solid-state NMR indicate that the PHEMA/PEG(88:12, w/w) blend is miscible on a molecular level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystallization behavior and morphology of poly(beta-hydroxybutyrate) and poly(vinyl acetate) blends have been studied with DSC, POM, SAXS and WAXD methods. The results indicate that the overall crystallization rate and spherulite growth rate are slower in the blends than that in the pure PHB. The addition of PVAc has no effect on the crystal structure of PHB, but affects its crystalline morphology. During crystallization of PHB, PVAc chains were being rejected into the region between the lamellae of crystalline PHB. (C) 1997 Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The glass transition temperature (T-g) of mixtures of polystyrene (PS) with different molecular weight and of blends of poly(2,6-dimethyl-p-phenylene oxide) (PPO) and polystyrene with different molecular weight (DMWPS) was studied by a DSC method. For the whole range of composition, the curves of T-g vs composition obtained by experiment were compared with predictions from the Fox, Gordon-Taylor, Couchman and Lu-Weiss, equations. It was found that the experimental results were not in agreement with those from the Fox, Gordon-TayIor and Couchman equations for the binary mixtures of DMWPS, where the interaction parameter chi was approximately zero. However, for the blends PPO/DMWPS (chi < 0), with an increase of molecular weight of PS, it was shown that the experimental results fitted well with those obtained from the Couchman, Gordon-Taylor and Fox equations, respectively. Furthermore, the Gordon-Taylor equation was nearly identical to the Lu-Weiss equation when \chi\ was not very large. Further, the dependence of the change of heat capacity associated with the glass transition (Delta C-p) on the molecular weight of PS was investigated and an empirical equation was presented. (C) 1997 Elsevier Science Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The crystal structure and mechanism of the title molecule are described. This crystal is orthorhombic, belonging to space group PC21/B with a=1,002 1(2) nm, b=1.483 0(3) nm, c=2.173 6(4) nm, V=3.230 39(2) nm(3), Z=2, D-c=1.80 g/cm(3), R=0.069 3. The structure was solved by direct method. The tin atom of the title compound exists in two distorted-trigonal-bipyramidal geometry, defined by two carbon, one bromide, one chloride and one oxygen atoms leading to a five-membered chelate ring. In the structure, the five-membered ring containing the intermolecular O-->Sn has a half chair conformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Blends of poly(vinyl methyl ether) (PVME) and poly(methyl methacrylate) (PMMA) compatibilized by poly(styrene-block-methyl methacrylate) (P(S-b-MMA)) ale studied by FT-IR, DSC, excimer fluorescence spectrometry, and scanning electron microscopy (SEM). In FT-IR measurement the ratio of absorption intensity at 1107 cm(-1) to that at 1085 cm(-1) (I-1107/I-1085) reaches a minimum at about 10wt% block copolymer content. DSC results show that the glass transition temperature of PVME in the blends has a maximum at 10 wt% copolymer content. In plots of the ratio of excimer-to-monomer fluorescence emission intensities (I-E/I-M) VS block copolymer content, I-E/I-M increases rapidly above 10%. Ail these phenomena show that PS block chains penetrate into PVME: domains on addition of block copolymer. Above 10% copolymer content, block copolymer chains tend to form micelles in bulk phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chemorheology and corresponding models for an epoxy-terminated poly(phenylene ether ketone) (E-PEK) and 4,4'-diaminodiphenyl sulfone (DDS) system were investigated using a differential scanning calorimeter (DSC) and a cone-and-plate rheometer. For this system, the reported four-parameter chemorheological model and modified WLF chemorheological model can only be used in an isothermal or nonisothermal process, respectively. In order to predict the resin viscosity variation during a stepwise temperature cure cycle actually used, a new model based on the combination of the four-parameter model and the modified WLF model was developed. The combined model can predict the resin viscosity variation during a stepwise temperature cure cycle more accurately than the above two models. In order to simplify the establishment of this model, a new five-parameter chemorheological model was then developed. The parameters in this five-parameter model can be determined through very few rheology and DSC experiments. This model is practicable to describe the resin viscosity variation for isothermal, nonisothermal, or stepwise temperature cure cycles accurately. The five-parameter chemorheological model has also successfully been used in the E-PEK systems with two other curing agents, i.e., the diamine curing agent with the addition of a boron trifluride monoethylamine (BF3-MEA) accelerator and an anhydride curing agent (hexahydrophthalic acid anhydride). (C) 1997 John Wiley & Sons, Inc.