479 resultados para POLY(ETHER IMIDE)
Resumo:
A facile method for the synthesis of biphenyl polyimides, which involves the nickel-catalyzed coupling of aromatic dichlorides containing imide structure in the presence of zinc and triphenylphosphine, has been developed. The polymerizations proceeded smoothly under mild conditions and produced biphenyl polyimides with inherent viscosities of 0.13-0.98 dL/g. The polymerizations of bis(4-chlorophthalimide)s with bulky side substituents gave high molecular weight polymers. Low molecular weight polymers from bis(4-chlorophthalimide)s containing rigid diamine moieties and bis(3-chlorophthalimide)s were obtained because of the formations of polymer precipitate and cyclic oligoimides, respectively. The effects of various factors, such as amount of catalyst, solvent volume, ligand, reaction temperature, and time, on the polymerization were studied. The random copolymerization of two bis(chlorophthalimide)s in varying proportions produced medium molecular weight material. The TgS of prepared polyimides were observed at 245-311 degreesC, and the thermogravimetry of polymers showed 10% weight loss in nitrogen at 470-530 degreesC.
Resumo:
The UV-visible absorption and fluorescence spectra of a soluble polyimide, YS-30, in several organic solvents were measured over a wide range of concentration. The experimental results show that there exist both intramolecular and intermolecular electron donor acceptor interactions for YS-30 molecules. The fluorescence behavior of YS-30 in N,N-dimethylacetamide and in chloroform solutions is similar in general, except that its ground-state intermolecular charge transfer emission is more obvious in N,N-dimethylacetamide solution. This difference is attributed to the greater extent of disruption of the chain packing by solvent or/and the more efficient radiationless energy dissipation process from the excited state complexes to chloroform. The intensity ratio of intermolecular charge transfer emission to intramolecular charge transfer emission is used to characterize the state of aggregation of YS-30 molecules in solutions. The plot of this ratio versus concentration indicates the existence of two critical concentrations. It is also found from the same plot that the decrease of coil size is very pronounced during the initial stage of shrinkage.
Resumo:
Three kinds of high-performance polyimides 1 (poly(ketone-imide) PKI), 2 (poly(ether-imide) PEI) and 3 (poly(oxy-imide) POI) were studied using nuclear magnetic resonance (NMR). The NMR spectra of the polyimides were assigned according to the comprehensive consideration of the substitution effect of different substituting groups, viz. distortionless enhancement by polarization transfer (DEPT), no nuclear Overhauser effect (NNE), analysis of relaxation time, and two-dimensional correlated spectroscopy (COSY) techniques. The structural units of these three polyimides were determined. Carbon-13 and proton relaxation times for PEI and PKI were interpreted in terms of segmental motion characterized by the sharp cutoff model of Jones and Stockmayer (JS model) and anisotropic group rotation such as phenyl group rotation and methyl group rotation. Correlation times for the main-chain motion are in the tens of picosecond range which indicates the high flexibility of polyimide chains. Correlation times for phenyl group and methyl group rotations are more than 1 order of magnitude lower and approximately 1 order of magnitude higher than that of the main chain, respectively.
Resumo:
A new monomer 1,5-bis(4-fluorobenzoyl)-2,6-dimethoxynaphthalene (DMNF) was prepared and further polymerized to form naphthalene-based poly(arylene ether ketone) copolymers containing methoxy groups (MNPAEKs). The side-chain-type sulfortated naphthalene-based poly(arylene ether ketone) copolymers (SNPAEKs) were obtained by demethylation and sulfobutylation. Flexible and tough membranes with reasonably high mechanical strength were prepared. The SNPAEKs membrane showed anisotropic membrane swelling with larger swelling in thickness than in plane. Transmission electron microscopy (TEM) analysis revealed clear nano-phase separated structure of SNPAEKs membranes, which composed of hydrophilic side chain and hydrophobic main-chain domains.
Resumo:
A series of soluble poly(amide-imide)s (PAIs) bearing triethylammonium sulfonate groups were synthesized directly using trimellitic anhydride chloride (TMAC) polycondensation with sulfonated diamine such as 2,2'-benzidinedisulfonic acid (BDSA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS), and nonsulfonated diamine 4,4-diaminodiphenyl methane in the presence of triethylamine. The resulting copolymers exhibited high molecular weights (high inherent viscosity), and a combination of desirable properties such as good solubility in dipolar aprotic solvents, film-forming capability, and good mechanical properties. Wide-angle X-ray diffraction revealed that the polymers were amorphous. These copolymers showed high permeability coefficients of water vapor because of the presence of the hydrophilic triethylammonium sulfonate groups. The water vapor permeability coefficients (P-w) and permselectivity coefficients of water vapor to nitrogen and methane [alpha(H2O/N-2) and (alpha(H2O/CH4)] Of the films increased with increasing the amount of the triethylammonium sulfonated groups.
Resumo:
A new crystal modification induced by strain and denoted as form II exists alongside the dominant form I structure in the uniaxially oriented poly(ether ether ketone) (PEEK) and the related polymers. The crystal structure of form II for PEEK is also found to possess a two-chain orthorhombic packing with unit cell parameters of a equal to 0.475 nm, b equal to 1.060 nm, and c equal to 1.086 nm. More extended and flattened chain conformation of form II relative to that of form I is expected to account for an 8% increase in c-axis dimension, which is attributed to the extensional deformation fixed in situ through strain-induced crystallization during uniaxial drawing. Annealing experiments suggest that form II is thermodynamically metastable and can be transformed into more stable form I by chain relaxation and reorganization at elevated temperature without external tension. This strain-induced polymorphism exists universally in the poly(aryl ether ketone) family. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The crystallization and melting behaviour of poly(aryl-ether-ether-ketone) (PEEK) in blends with another polymer of the same family containing a bulky pendant phenolphthalein group (PEK-C) have been investigated by thermal methods. The small interaction energy density of the polymer pair (B = -8.99 J/cm3), evaluated from equilibrium melting point depression, is consistent with the T(g) data that indicate partial miscibility in the melt. Two conjugated phases are in equilibrium at 430-degrees-C: one is crystallizable and contains about 35 wt% of PEK-C; the other, containing only 15 wt% of PEEK, does not form crystals upon cooling and it interferes with the development of spherulites in the sample. The analysis of kinetic data according to nucleation theories shows that crystallization of PEEK in the explored temperature range takes place in Regime III and that a transition to Regime II might be a consequence of an increase in the amount of non-crystallizable molecules in the PEEK-rich phase. A composition independent value of the end surface free energy of PEEK lamellae has been derived from kinetic data (sigma-e = 40 +/- 4 erg/cm2) in excellent agreement with previous thermodynamic estimates. A new value for the equilibrium melting temperature of PEEK (T(m)-degrees = 639 K) has been obtained; it is about 30-degrees-C lower than the commonly accepted value and it explains better the "memory effect" in the crystallization from the melt of this high performance polymer.
Resumo:
A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.
Resumo:
A new method for synthesis of novel hyperbranched poly(ester-amide)s from commercially available AA' and CBx type monomers has been developed on the basis of a series of model reactions. The hyperbranched poly(ester-amide)s with multihydroxyl end groups are prepared by thermal polycondensation of carboxyl anhydrides (AA') and multihydroxyl primary amine (CBx) without any catalyst and solvent. The reaction mechanism in the initial stage of polymerization was investigated with in situ H-1 NMR. In the initial stage of the reaction, primary amino groups of 2-amino-2-ethyl-1,3-propanediol (AEPO) or tris(hydroxymethyl)aminomethane (THAM) react rapidly with anhydride, forming an intermediate which can be considered as a new AB(x) type monomer. Further self-polycondensation reactions of the AB. molecules produce hyperbranched polymers. Analysis using H-1 and C-13 NMR spectroscopy revealed the degree of branching of the resulting polymers ranging from 0.36 to 0.55. These hyperbranched poly(ester-amide)s contain configurational isomers observed by C-13 and DEPT C-13 NMR spectroscopy, possess high molecular weights with broad distributions and display glass-transition temperatures (T(g)s) between 7 and 96 degreesC.
Resumo:
Multiple melting behavior was observed in the differential scanning calorimetry (DSC) scans for the isothermally crystallized poly(iminosebacoyl iminodecamethylene) (PA1010) samples. Coexistence of crystal populations with different lamellar thickness in PA1010 was discussed by means of DSC, wide-angle X-ray diffraction (WAXD), and small-angle X-ray scattering techniques. During crystallization of the polymer, a major lamellar crystal population developed first, which possessed a higher melting temperature. However, a small fraction of the polymer formed minor crystal population with thinner lamellae, which was metastable and, upon post-annealing, could grow into more stable and thicker lamellae through melting and recrystallization process. Lamellae insertion or stacks would develop during the post-annealing at a lower temperature for the isothermally crystallized samples; thus, multiple crystal populations with different thickness could be produced. It is the multiple distribution of lamella thickness that gives rise to multiple melting behavior of crystalline polymers. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Miscibility and crystallization behavior of solution-blended poly(ether ether ketone)/polyimide (PEEK/PI) blends were investigated by using DSC, optical microscopy and SAXS methods. Two kinds of PIs, YS-30 and PEI-E, which consist of the same diamine but different dianhydrides, were used in this work. The experimental results show that blends of PEEK/YS-30 are miscible over the entire composition range, as all the blends of different compositions exhibit a single glass transition temperature. The crystallization of PEEK was hindered by YS-30 in PEEK/YS-30 blends, of which the dominant morphology is interlamellar. On the other hand, blends of PEEK/PEI-E are immiscible, and the effect of PEI-E on the crystallization behavior of PEEK is weak. The crystallinity of PEEK in the isothermally crystallized PEEK/YS-30 blend specimens decreases with the increase in PI content. But the crystallinity of PEEK in the annealed samples almost keeps unchanged and reaches its maximum value, which is more than 50%. The spherulitic texture of the blends depends on both the blend composition and the molecular structure of the PIs used. The more PI added, the more imperfect the crystalline structure of PEEK. (C) 1998 John Wiley & Sons, Inc.
Resumo:
Macrocyclic arylene ether ketone dimer was isolated from a mixture of cyclic oligomers obtained by the nucleophilic substitution reaction of bisphenol A and 4,4'-difluorobenzophenone and easily polymerized to high molecular weight linear poly(ether ketone). The cyclic compound was characterized by FTIR, H-1- and C-13-NMR, and single-crystal x-ray diffraction. Analysis of the spectral and crystal structure reveals extreme distortions of he phenyl rings attached to the isopropylidene center and of the turning points of the molecular polygons. The release of the ring strain on ring-opening combined with entropical difference between the linear polymer chain and the more rigid macrocycle at temperatures of polymerization may be the proposed motivating factors in the polymerization of this precursor to high molecular weight poly(ether ketone). (C) 1997 John Wiley & Sons, Inc.
Resumo:
Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.
Resumo:
酚酞型聚醚砜(C-PES)是一种综合性能优异的工程塑料和功能材料,具有良好的成膜性、机械性能、热稳定性、化学稳定性和可加工性等。作为一种高性能的膜材料,酚酞型聚醚砜已被广泛的用于气体分离和水处理等领域。酚酞型聚醚砜侧链上含有可修饰的酯基,可通过各种方法,引入功能基团,对其进行化学改性,从而改善C-PES的各种性能,并扩展其应用领域。本论文设计制备了含有烷基、芳基、胺基以及磺酸基等功能基团的新型酚酞型聚醚砜材料,并对其性质进行了深入的研究: 1.通过各种基团修饰的二酚单体和二氯二苯砜的缩聚,合成了新型的含有不同酞侧基的Cardo型聚醚砜高分子材料,并对其性能进行了详细的研究。结果表明,所有聚合物都表现出极好的溶解性、耐热稳定性、成膜性、力学性能和气体分离性能;通过在酞侧基上引入了大体积的对叔丁基苯基,大大改善了材料的透气性和氧氮分离选择性;通过引入仲胺基,增大了聚合物链间作用力,从而提高了气体的分离选择性。此外,我们还对不同基团的引入对聚合物各种性能的影响作了详细的探讨,着重研究了聚合物的结构-性能关系。 2.利用含有胺基的双酚单体PPH-NH2、PPH和二氯二苯砜的共聚反应,成功合成了含有胺基的Cardo型聚醚砜高分子材料(PES-NH2),并对材料的各种性质进行了表征。结果表明,由于胺基的引入,酚酞型聚醚砜的亲水性得到了大幅度的提高。 3.利用含胺基的Cardo双酚和磺化二氯二苯砜在碳酸钾作用下的缩聚反应,成功合成了含胺基的磺化Cardo型聚醚砜 (SPES-NH2),并用于制备反渗透复合膜。通过优化制膜条件,我们利用界面聚合的方法成功制备了高水通量的TMC/ MPDA/SPES-NH2反渗透复合膜,并对复合膜的性能和结构进行了研究,重点讨论了膜的性能和结构、形貌之间的关系。结果表明,通过在复合膜活性层中引入强亲水性的磺酸基和全刚性主链的Cardo型聚醚砜,复合膜在保持较高盐截留率(97.3%)情况下,水通量得到了大幅度的提高,达到了51.2 L/m2.h。 4.合成了新型的全刚性芳香主链的两性聚电解质SPES-NH3+,并对其溶液性质和自组装行为进行了详细的研究。结果表明,在一定的溶液pH值下,两性聚电解质SPES-NH3+表现出聚阴离子的性质。另外,通过引入[BMIM]+离子屏蔽磺酸根负离子,我们在没有加入其它聚电解质的情况下,成功地制备了[BMIM]SPES-NH3+多层膜,并对多层膜表面性质进行了研究。结果表明,多层膜的厚度可由层数来控制,并且膜表面较平滑,其RMS值为6 nm。这种新的组装方式为构筑刚性主链的两性聚电解质多层膜提供了新的方法。
Resumo:
1.热可交联聚酰亚胺/高性能热塑性树脂共混体系的研究聚苯硫醚[Poly(phenylene sulfide),PPS]是由刚性结构的苯环和柔性的硫醚连接起来,交替排列构成的线性高分子化合物,具有高的热稳定性、良好的耐化学药品性、优良的电绝缘性、耐老化性和阻燃性等综合性能优异的高性能树脂。聚醚矾〔Poly(ether sulfone),PES]是一种非结晶性的热塑性工程塑料一,具有优异的热稳定性、耐高温蠕变性及优异的物理机械性能。其高的玻璃化转变温度(Tg=225℃),使其可以在较高温度下作为结构材料使用。本论文研究了PPS/PES二元共混物的热性能和动态力学性能,并以热可控交联的低分子量多官能单体PMR-POI(聚醚酰亚胺)为界面增强剂,分别研究了POI与PPS、PES之间的接枝和/或交联反应,POI对PPS结晶行为的影响,POI对PES分子运动的影响和POI对PPS/PES共混体系的界面增强。主要结果如下:1.PPS/PES共混物相容性的特征在于选择性的部分相容,少量的非晶PPS分子可以扩散进入PES相区,相反的扩散过程则不会发生。2.PPS/PES共混物的热学性质和动态力学性能主要受连续相的控制。3.PPS相的性能主要受其结晶度的影响,因此能够改变其结晶度的因素均会改变PPS相的性质。4.光谱学和流变的证据表明,POI同PES,PPs共混过程中有接枝反应发生,分子链增长,分子量加大。这种接枝和/或交联反应的程度是热可控的。5.POI是PPS的增塑剂,成核剂和扩链剂,与POI共混使得PPS结晶速率增加,平衡熔点上升,表面折叠自由能降低。6;在PES/POI体系中Pol对PEs起到了增塑的作用,Tg降低,经高温热处理后Tg上升。因此,POI对PES性能的影响也是热可控的。7.PMR-POI能够在PPS/PES共混体系中有效地扩散并起到了降低分散相粒子的尺寸、增强界面的作用。它是该共混体系的有效界面增强剂。8."高温退火既能够提高扩散速率也能够提高反应速率;二者相互竞争。2.马来酸配封端溉碳酸丙撑酯的研究二氧化碳与环氧丙烷交替共聚物(polypropylene careonate,PPC)是由二氧化碳活化并与环氧丙烷共聚而成的一类可完全生物降解的新型高分子材料,具有巨大的潜在应用价值。本论文讨论了马来酸配封端的聚碳酸丙撑酯(MA-PPC)和未封端的PPC的粘弹性、流变行为以及热降解和热分解行为,并得出如下结论:1.马来酸配封端抑制了PPC解拉链式的热分解和无规链断裂热降解,PPC的热稳定性和力学性能得到提高。2.PPC和MA-PPC在玻璃化转变温度有相似的自由体积分数,PPC的Tg比MA-PPC稍低。虽然PPC和MA-PPC玻璃化转变表观活化能E。和平均松弛时间T随温度升高单调降低,但PPC的分子运动对温度更敏感,而MA-PPC较稳定。马来酸配封端改变了PPC分子运动的特征及松弛行为,许多实验证据证明,这是由于封端后的PPC大分子链间的相互作用增强及分子链缠结密度增加。3.MA-PPC在70℃左右会发生脱水,实现大分子偶联反应并得到变温红外光谱、分子量成倍增加及线膨胀数据的有力支持。4.用零剪切粘度几。的方法测得PPC及MA-PPC加工过程中的热降解温度,它们分别为150℃和175℃,在此温度以上,η0降低速率的增加归因于大分子的主链断裂以及解拉链反应。5.测得了PPC的临界缠结分子量,它几乎是MA-PPC相应值(6613)的3倍。这表明马来酸配封端不仅改善了PPC的熔体弹性,而且也大大增强了PPC的缠结密度以及分子链间的相互作用。6.在本实验条件下在氮气和空气的气氛中,MA-PPC同PPC的热降解和热分解行为几乎一致,即在PPc的加土过程可以忽略氧气对其的影响。7.虽然MA-PPC的玻璃化温度在40℃左右,但在40℃-120℃的温度区间内,MA-PPC达不到粘流状态。8.没有剪切力时在120℃-150℃,30分钟内,MA-PPC几乎没有降解,在静态条件下,低于170℃时,MA-PPC的解拉链式降解是十分轻微的,当温度超过170℃,PPC降解相当严重。9.在热机械力存在的情况下,发生无规断链的机会增加,无规断链又会加速解拉链降解,因此实际加工中的加工窗口比静态下窄,MIA-PPC的加工窗口应为130℃-160℃。10.MA-PPC的热分解过程是一步完成的,热分解温度随升温速率的加快而提高,并计算出热分解的表观活化能为623.3KJ/mol。