110 resultados para Olefin hydroamination
Resumo:
A series of new titanium complexes bearing beta-diiminato ligands [(Ph)NC(R-1)CHC(R-2)N(Ph)](2)TiCl2 (4a: R-1 = R-2 = CH3; 4b: R-1 = R-2 = CF3; 4c: R-1 = Ph, R-2 = CH3; 4d: R-1 = Ph, R-2 = CF3) has been synthesized and characterized. X-ray crystal structures reveal that complexes 4a and 4c adopt distorted octahedral geometry around the titanium center. With modified methylaluminoxane (MMAO) as a cocatalyst, complexes 4a-d are active catalysts for ethylene polymerization, and produce high molecular weight polyethylenes. Catalyst activities and the molecular weights of polymers are considerably influenced by the steric and electronic effects of substituents on the catalyst backbone under the same polymerization condition. With the strong electron-withdrawing groups (CF3) at R-1 or/and R-2 position, complexes 4b and 4d show higher activities than complexes 4a and 4c, respectively.
Resumo:
A series of titanium phosphinimide complexes [Ph2P(2-RO-C6H4)(2)TiCl2 (7, R = CH3; 8, R = CHMe2) and (PhP(2-Me2CHOC6H4)][THF]TiCl3 (9) have been prepared by reaction of TiCl4 with the corresponding phosphinimines under dehalosilylation. The structure of complex 9 has been determined by X-ray crystallography, and a solvent molecule THF was found to be coordinated with the central metal and the Ti-O bond was consistent with the normal Ti-O (donor) bond length. The complexes 7 and 8 displayed inactive to ethylene polymerization, and the complex 9 displayed moderate activity in the presence of modified methylaluminoxane (MMAO) or i-BU3Al/Ph3CB(C6F5)(4), and this should be partly attributed to coordination of THF with titanium and the steric effect of two iso-propoxyl. And catalytic activity up to 32.2 kg-PE/(mol-Ti h bar) was observed.
Resumo:
Group 4 complexes containing diphosphinoamide ligands [Ph2PNR](2)MCl2 (3: R = Bu-t, M = Ti; 4: R = Bu-t, M = Zr; 5: R = Ph, M = Ti; 6: R = Ph, M = Zr) were prepared by the reaction Of MCl4 (M = Ti; Zr) with the corresponding lithium phosphinoamides in ether or THF. The structure of [(Ph2PNBu)-Bu-t](2)TiCl2 (3) was determined by X-ray crystallography. The phosphinoamides functioned as eta(2)-coordination ligands in the solid state and the Ti-N bond length suggests it is a simple single bond. In the presence of modified methylaluminoxane or i-Bu3Al/Ph3BC(C6F5)(4), catalytic activity of up to 59.5 kg PE/mol cat h bar was observed.
Resumo:
A series of 2,6-bis(imino)pyridyl iron and cobalt complexes bearing p-substituent [2,6-(ArN=CMe)(2)C5H3N]-MCl2 (Ar=2,6-Me2C6H3, 2,4,6-Me3C6H2, 2,6-Me-2-4-BrC6H2, 2,6-Me-2-4-ClC6H2, 2,4-Me-2-6-BrC6H2, 2,4-Me-(2)-6-ClC6H2, while M=Fe, Co) have been synthesized and investigated as catalysts for ethylene polymerization in the presence of modified methylaluminoxane as a cocatalyst. The electron effect and positions of the substitueni of pyridinebisimine ligands were observed to affect considerably catalyst activity and polymer property.
Resumo:
A catalyst with porous polystyrene beads supported Cp2ZrCl2 was prepared and tested for ethylene polymerization with methylaluminoxane as a cocatalyst. By comparison, the porous supported catalyst maintained higher activity and produced polyethylene with better morphology than its corresponding solid supported catalyst. The differences between activities of the catalysts and morphologies of the products were reasonably explained by the fragmentation processes of support as frequently observed with the inorganic supported Ziegler-Natta catalysts. Investigation into the distribution of polystyrene in the polyethylene revealed the fact that the porous polystyrene supported catalyst had undergone fragmentation during polymerization.
Resumo:
Ethylene homopolymerizations and copolymerizations were catalyzed by zirconocene catalysts entrapped inside functionalized. montmorillonites that had been rendered organophilic via the ion exchange of the interlamellar cations of layered montmorillonite with hydrochlorides Of L-amino acids (AAH(+)Cl(-)) or their methyl esters (MeAAH(+)Cl(-)), with or without the further addition of hexadecyltrimethylammonium bromide (C16H33N+Me3Br-; R4N+Br-). In contrast to the homogeneous CP2ZrCl2/methylaluminoxane catalyst for ethylene homopolymerizations and copolymerizations with 1-octene, the intercalated Cp2ZrCl2 activated by methylaluminoxane for ethylene homopolymerizations and copolymerizations with 1-octene proved to be more effective in the synthesis of polyethylenes with controlled molecular weights, chemical compositions and structures, and properties, including the bulk density. The effects of the properties of the organic guests on the preparation and catalytic performance of the intercalated zirconocene catalysts were studied.
Resumo:
Reaction of salts of the 2,5-disubstituted amino-p-benzoquinone bridging ligand (la-e) with trans-bis(triphenylphosphane)phenylnickel(II) chloride results in the binuclear complexes 2a-e, which show high activities for ethylene polymerization without any cocatalysts. High-molecular-weight, moderately branched polyethylene of broad molecular-weight distribution was obtained.
Resumo:
[Ni(Ph)(PPh3)(N,O)] complexes containing phenyliminophenolato ligands (N,O) (1: N,O = A; 2: N,O = B; 3: N,O = Q 4: N,O = D; 5: N,O = E) have been synthesized and characterized. The molecular structure of 4 was determined by single-crystal X-ray analysis. Complexes 2-5 bearing allyl groups have been investigated as self-immobilized catalysts for ethylene polymerization without the use of co-catalysts. The high ethylene polymerization activities of ca. 10(5) g.PE mol(-1) Ni.h(-1) and high molecular weight (M-w approximate to 10(5)) of polyethylene could be accomplished by changing the ligand structures and reaction conditions. The self-immobilization of catalysts brings about a dramatic increase in the catalytic activities of ethylene polymerization.
Resumo:
The multiple melting behavior of several commercial resins of isotactic polypropylene (iPP) and random copolymer, poly(propylene-co-ethylene) (PPE), after stepwise isothermal crystallization (SIC) were studied by differential scanning calorimeter and wide-angle X-ray diffraction (WAXD). For iPP samples, three typical melting endotherms appeared after SIC process when heating rate was lower than 10 degreesC/min. The WAXD experiments proved that only alpha-form crystal was formed during SIC process and no transition from alpha1- to alpha2-form occurred during heating process. Heating rate dependence for each endotherm was discussed and it was concluded that there were only,two major crystals with different thermal stability. For the PPE sample, more melting endotherms appeared after stepwise isothermal crystallization. The introduction of ethylene comonomer in isotactic propylene backbone further decreased the regularity of molecular chain, and the short isotactic propylene sequences could crystallize into gamma-form crystal having a low melting temperature whereas the long sequences crystallized into alpha-form crystal having high melting temperature.
Resumo:
Reaction of anhydrous lanthanide trichlorides with tetrahydrofurfuryl indenyl lithium in THF afforded bis(tetrahydrofurfurylindenyl) lanthanocene chlorides complexes (C4H7OCH2C9H6)(2) LnCl, Ln = Nd (1), Sm (2), Dy (3), Ho (4), Er (5), Yb (6). The X-ray crystallographic structures of all the six complexes were determined and these indicate that they are unsolvated nine-coordinate monomeric complexes with a trans arrangement of both the sidearm and indenyl rings in the solid state. They belong to the same crystal system (orthorhombic) and space group (P2(1)2(1)2(1)) with the same structure. Especially, they are more stable to air and moisture than the corresponding unsubstituted indenyl lanthanide complexes.
Resumo:
Ansa-zirconocene complex with an allyl substituted silane bridge [(CH2=CHCH2)CH3Si(C5H4)(2)]ZrCl2 (1a) has been synthesized and characterized. The molecular structure of la has been determined by X-ray crystallographic analysis. The polymer immobilized metallocene catalyst 1b is prepared by the co-polymerization of la with styrene in the presence of radical initiator. The result of ethylene polymerization showed that the polymer immobilized metallocene catalyst kept high activity for ethylene polymerization and was a potential supported catalyst for olefin polymerization.
Resumo:
A new family of self-immobilized ethylene polymerization catalysts, derived from neutral, single-component salicylaldiminato phenyl nickel complexes, is described.
Resumo:
Polyamide (PA)1010 is blended with a saturated polyolefin elastomer, ethylene-cu-olefin copolymer (EOCP). To improve the compatibility of PA1010 with EOCP, different grafting rates of EOCP with maleic anhydride (MA) are used. The reaction between PA1010 and EOCP-g-MA during extrusion is verified through an extraction test. Mechanical properties, such as notched Izod impact strength, elongation at break, etc., are examined as a function of grafting rate and weight fraction of elastomer. It was found that in the scale of grafting rate (0.13-0.92 wt %), 0.51 wt % is an extreme point for several mechanical properties. Elastomer domains of PA1010/ EOCP-g-MA blends show a finer and more uniform dispersion in the matrix than that of PA1010/EOCP blends. For the same grafting rate, the average sizes of elastomer particles are almost independent on the contents of elastomer, but for different grafting rates, the particle sizes are decreased with increasing grafting rate. The copolymer formed during extrusion strengthens the interfacial adhesion and acts as an emulsifier to prevent the aggregation of elastomer in the process of blending. (C) 2000 John Wiley & Sons, Inc.
Resumo:
The use of functional groups bearing silica/poly(styrene-co-4-vinylpyridine) core-shell particles as a support for a zirconocene catalyst in ethylene polymerization was studied. Several factors affecting the behavior of the supported catalyst and the properties of the resulting polymer, such as time, temperature, Al/N (molar ratio), and Al/Zr (molar ratio), were examined. The conditions of the supported catalyst preparation were more important than those of the ethylene polymerization. The state of the supported catalyst itself played a decisive role in both the catalytic behavior of the supported catalyst and the properties of polyethylene (PE). IR and X-ray photoelectron spectroscopy were used to follow the formation of the supports. The formation of cationic active species is hypothesized, and the performance of the core-shell-particle-supported zirconocene catalyst is discussed as well. The bulk density of the PE formed was higher than that of the polymer obtained from homogeneous and polymer-supported Cp2ZrCl2/methylaluminoxane catalyst systems. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Blends of polypropylene (PP) and low density polyethylene (LDPE) have been examined for a series of compositions using differential scanning calorimetry and permanganic etching followed by transmission electron microscopy. Thermal analysis of their melting and recrystallization behaviour suggests two possibilities, either that below 15 wt % PP the blends are fully miscible and that PP only crystallizes after LDPE because of compositional changes in the remaining melt, or else that the PP is separated, but in the form of droplets too small to crystallize at normal temperatures. Microscopic examination of the morphology shows that the latter is the case, but that a fraction of the PP is nevertheless dissolved in the LDPE. (C) 1998 Kluwer Academic Publishers.