135 resultados para NORTHERN PERU
Resumo:
Radiolarian distribution in surface sediments of 104 stations from northern and central South China Sea show that the abundance and diversity of radiolarians increase with the water depth and are related to radiolarian concentrations from the water column, diminished terrigenous input, variability in calcareous shell content and the rate of silica and carbonate dissolution in the deep sea. According to the appearances of individual species in surface sediments at particular depths, seven faunal boundaries distribution are recognized at water depths of 100, 450, 650, 1000, 1200, 1400 and 2500 m. Four radiolarian assemblages in the sediments were identified by applying clustering procedures. Geographic distributions of these four assemblages coincide with present-day hydrologic features of the surface waters in this area.
Resumo:
Eighteen isolates of the red algae Chondrus crispus were collected from Northern Atlantic sites, together with C. ocellatus, C. yendoi and C. pinnulatus from the North Pacific. The nuclear rDNA internal transcribed spacer (ITS) was sequenced and compared, spanning both the ITS regions and the 5.8S rRNA gene. Percentage of nucleotide variation for C. crispus ranged from 0.3% to 4.0%. Phylogenetic analyses were performed using maximum parsimony (MP), neighbor-joining (NJ) and minimum evolution methods. They showed that two main clades existed within the C. crispus samples examined and that suggested C. crispus had a single Atlantic origin. The clustering however did not follow the geographic origin. We hypothesized that the current distribution of C. crispus populations might be a result of three main factors: temperature boundaries, paleoclimate and paleoceanography. ITS data exhibited abundant molecular information not only for phylogeographical investigation but also for systematics studies.
Resumo:
Quantitative studies on the evolution and dynamics of the deepwater area of Pearl River Mouth basin (PRMB) were carried out based on the latest geological and seismic data. The study area is generally in an extensional state during the Cenozoic. The major extension happened in the earlier syn-rift stages before 23 Ma and the extension after 23 Ma is negligible. Two rapid subsidence periods, 32-23 Ma and 5.3-2.6 Ma, are identified, which are related to the abrupt heat decay during margin breakup and the collision between the Philippine Sea plate and the Eurasian plate, respectively. The strongest crustal thinning in the Baiyun (sic) sag may trigger the syn-rift volcanism along the weak faulted belt around the sag. The Cenozoic tectonic evolution of the study area could be divided into five stages: rifting (similar to 50-40 Ma), rift-drift transition (similar to 40-32 Ma), early post-breakup (similar to 32-23 Ma), thermal subsidence (similar to 23-5.3 Ma) and neotectonic movement (similar to 5.3-0 Ma).
Resumo:
Using satellite images taken on different dates, GIS analysis of aerial photos, bathymetric maps and other field survey data, tidal troughs and major sand ridges in the northern Jiangsu coastal area were contrasted. The results show that there have been three types of movement or migration of tidal trough in this area: (1) Periodic and restricted, this type of trough usually developed along the beaches with immobile gully head as a result of the artificial dams and the swing range increased from gully head to the low reaches, so they have been obviously impacted by human activity and have longer swing periods; (2) Periodic and actively, this kind of trough, which swung with a fast rate and moved periodically on sand ridges, were mainly controlled by the swings of the host tidal troughs and hydrodynamic forces upon tidal sand ridge and influenced slightly by human constructions; (3) Steadily and slowly, they are the main tidal troughs with large scale and a steady orientation in this area and have slow lateral movement. The differences in migration mode of tidal trough shift result in different rates of migration and impact upon tidal sand ridges. Lateral accumulation on current tidal trough and deposition on abandoned tidal troughs are the two types of sedimentation of the tidal sand ridges formation. The whole radial sand ridge was generally prone to division and retreat although sand ridges fluctuated by the analysis of changes in talwegs of tidal troughs and shorelines of sand ridges.
Resumo:
A pollen record of core PC-1 from the northern Okinawa Trough, East China Sea (ECS), provides information on vegetation and climate changes since 24 cal. kaBP. A total of 103 samples were palynologically analyzed at 8 cm intervals with a time resolution of 230 a. Four pollen zones are recognized: zone I (812-715 cm, 24.2-21.1 cal. kaBP), zone II (715-451 cm, 21.1-15.2 cal. kaBP), zone III (451-251 cm, 15.2-10.8 cal. kaBP), zone IV (251-0 cm, 10.8-0.3 cal. kaBP), corresponding to Late MIS 3, Last Glacial Maximum (LGM), deglaciation and Holocene, respectively. The LGM is characterized by the dominance of herbs, mainly Artemisia, and high pollen influx, implying an open vegetation on the exposed continental shelf and a cool and dry climate. The deglaciation is a climate warming stage with Pinus percentage increased and Artemisia percentage decreased and a rapid sea-level rise. The Holocene is characterized by predominance of tree pollen with rapid increase in Castanea-Castanopsis indicating the development of mixed evergreen and deciduous broad-leaved forest and a warm, humid climate. Low pollen influx during the Holocene probably implies submergence of the continental shelf and retreat of the pollen source area. The vegetation indicated by pollen assemblage found in this upper zone is consistent with the present vegetation found in Kyushu, Japan. Originating from the humid mountain area of North Luzon of the Philippines, Tasmania and New Zealand, Phyllocladus with sporadic occurrence throughout PC-1 core probably suggests the influence of Palaeo-Kuroshio Current or intense summer monsoon. The observed changes in Pinus and Herbs percentage indicate fluctuations of the sea level, and high Pinus percentage corresponds to high sea level. Spectrum analysis of the pollen percentage record reveals many millennial-scale periodicities, such as periodicities of 6.8, 3.85 2.2, 1.6 ka.
Resumo:
Based on high-resolution 3D seismic data, we document the polygonal faults within the Miocene Meishan (sic) Formation and Huangliu (sic) Formation of the Qiongdongnan (sic) basin, northern South China Sea. Within the seismic section and time coherent slice, densely distributed extensional faults with small throw and polygonal shape were identified in map view. The orientation of the polygonal faults is almost isotropic, indicating a non-tectonic origin. The deformation is clearly layer-bounded, with horizontal extension of 11.2% to 16%, and 13.2% on average. The distribution of polygonal faults shows a negative correlation with that of gas chimneys. The development of polygonal faults may be triggered by over-pressure pore fluid which is restricted in the fine-grained sediments of bathyal facies when the sediments is compacted by the burden above. The polygonal faults developed to balance the volumetric contraction and restricted extension. The product of hydrocarbon in the Meishan Formation may have contributed to the development of the polygonal faults. In the study area, it was thought that the petroleum system of the Neogene post-rift sequence is disadvantageous because of poor migration pathway. However, the discovery of polygonal faults in the Miocene strata, which may play an important role on the fluid migration, may change this view. A new model of the petroleum system for the study area is proposed.
Resumo:
Gas hydrate samples were obtained firstly in China by drilling on the northern margin of South China Sea (SCS). To understand the formation mechanism of this unique accumulation system, this paper discusses the factors controlling the formation of the system by accurate geophysical interpretation and geological analysis, based on the high precision 2-D and 3-D multichannel seismic data in the drilling area. There are three key factors controlling the accumulation of the gas hydrate system in fine grain sediment: (1) large volume of fluid bearing methane gas Joins the formation of gas hydrate. Active fluid flow in the northern South China Sea makes both thermal gas and/or biogenic gas migrate into shallow strata and form hydrate in the gas hydrate stability zone (GHSZ). The fluid flow includes mud diapir and gas chimney structure. They are commonly characterized by positive topographic relief, acoustic turbidity and push-down, and low reflection intensity on seismic profiles. The gas chimneys can reach to GHSZ, which favors the development of BSRs. It means that the active fluid flow has a close relationship with the formation and accumulation of gas hydrate. (2) The episodic process of fracture plays an important role in the generation of gas hydrate. It may provide the passage along which thermogenic or biogenic gas migrated into gas hydrate stability zone (GHSZ) upward. And it increases the pore space for the growth of hydrate crystal. (3) Submarine landslide induced the anomalous overpressure activity and development of fracture in the GHSZ. The formation model of high concentration gas hydrate in the drilling sea area was proposed on the basis of above analysis.
Resumo:
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic. In the rifting stage, the margin received lacustrine and shallow marine facies sediments. In the post-rifting thermal subsidence, the margin accumulated shallow marine facies and hemipelagic deposits, and the deepwater basins formed. Petroleum systems of deepwater setting have been imaged from seismic data and drill wells. Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea. The deepwater reservoirs are characterized by the deep sea channel rill, mass flow complexes and drowned reef carbonate platform. Profitable capping rocks on the top are mudstones with huge thickness in the post-rifting stage. Meanwhile, the faults developed during the rifting stage provide a migration path favourable for the formation of reservoirs. The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta, deepwater submarine fan sandstone and reef carbonate reservoirs.
Resumo:
Our analysis of approximately 40,000 km of multichannel 2-D seismic data, reef oil-field seismic data, and data from several boreholes led to the identification of two areas of reef carbonate reservoirs in deepwater areas (water depth >= 500 in) of the Qiongdongnan Basin (QDNB), northern South China Sea. High-resolution sequence stratigraphic analysis revealed that the transgressive and highstand system tracts of the mid-Miocene Meishan Formation in the Beijiao and Ledong-Lingshui Depressions developed reef carbonates. The seismic features of the reef carbonates in these two areas include chaotic bedding, intermittent internal reflections, chaotic or blank reflections, mounded reflections, and apparent amplitude anomalies, similar to the seismic characteristics of the LH11-1 reef reservoir in the Dongsha Uplift and Island Reef of the Salawati Basin, Indonesia, which house large oil fields. The impedance values of reefs in the Beijiao and Ledong-Lingshui Depressions are 8000-9000 g/cc x m/s. Impedance sections reveal that the impedance of the LH11-1 reef reservoir in the northern South China Sea is 800010000 g/cc x m/s, whereas that of pure limestone in BD23-1-1 is > 10000 g/cc x m/s. The mid-Miocene paleogeography of the Beijiao Depression was dominated by offshore and neritic environments, with only part of the southern Beijiao uplift emergent at that time. The input of terrigenous sediments was relatively minor in this area, meaning that terrigenous source areas were insignificant in terms of the Beijiao Depression: reef carbonates were probably widely distributed throughout the depression, as with the Ledong-Lingshui Depression. The combined geological and geophysical data indicate that shelf margin atolls were well developed in the Beijiao Depression, as in the Ledong-Lingshui Depression where small-scale patch or pinnacle reefs developed. These reef carbonates are promising reservoirs, representing important targets for deepwater hydrocarbon exploration. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Recently, as oil exploitation has become focused on deepwater slope areas. more multi-channel high resolution 2D and 3D seismic data were acquired in the deepwater part of the Qiongdongnan Basin, northern South China Sea. Based on 3D seismic data and coherence time slice, RMS and 3D visualization, a series of deepwater channels were recognized on the slope that probably developed in the late Quaternary period. These channels trend SW-NE to W-E and show bifurcations, levees, meander loops and avulsions. High Amplitude Reflections (HARs), typical for channel-levee complexes, are of only minor importance and were observed in one of the channel systems. Most of the detected channels are characterized by low-amplitude reflections, and so are different from the typical coarse-grained turbidite channels that had been discovered worldwide. The absence of well data in the study area made it difficult to determine the age and lithology of these channels. Using a neighboring drill hole and published data about such depositional systems worldwide, the lithology of these channels is likely to be dominated by mudstones with interbedded thin sandstones. These channels are formed by turbidity currents originated from the little scale mountain river of mid-Vietnam in SW direction and were probably accompanied by a relative sea level drop in the last glacial age. These channels discovered on the northern South China Sea slope are likely to be fine-grained, mud-dominant and low N:G deposits in a deepwater paleogeographic setting. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
High-resolution multi-channel seismic data and geological samples were collected during two research cruises of the R/V FENDOU 4 in 1999 and 2000. Studies on these data and samples together with results from sites 1143-1145 and 1148 of ODP Leg 184 suggest that the geological structure on the continental slope of the northern South China Sea is favorable for the formation of gas hydrates. Bottom simulating reflectors (BSRs) and geochemical anomalies which indicate the existence of gas hydrates have been recognized in sediments of the Xisha Trough, the Dongsha Rise and the accretionary wedge of the Manila subduction zone. These gas hydrates are generated by two different mechanisms depending on the tectonic regime and the seismic and geochemical characteristics. The first applies to the passive continental margin of the nor-them South China Sea on the Dongsha Rise and in the Xisha Trough. The gas hydrates are associated with diapiric structures, active faults, slumps and gravity flows as well as high Late Cenozoic sedimentation rates. Their seismic expression includes BSRs, seismic blanking zones and velocity anomalies. The second mechanism is operative on the active continental margin along the Manila subduction zone, especially in the accretionary wedge. Here, gas hydrate occurrence is marked by widespread BSRs and acoustic 'pull-down' possibly related to the existence of free gas in the sediments beneath the BSR. The thickness of the seismic blanking zones averages 250 m, suggesting that the stable gas hydrate zone has about the same thickness. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E-W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky-hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N-S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E-W fan channel was probably affected by the E-W fault and the basement morphology.
Resumo:
As the Okinawa Trough is a back-are basin in early spreading, modern submarine hydrothermal activity and minerallization have many characteristics which have aroused wide attention. Up to now three well-known hydrothermal venting areas are all located in the middle part of the trough, During two cruise investigations to map and sample the seafloor numbers of Calyptogena sp, shells were dredged at two sites in the northern trough with comparatively thicker crust and numerous submarine volcanoes. Based on the fact that Calyptogena sp, is only observed around the hydrothermal vents and lives on hydrothermal activities, it is predicted that there is the possibility of modern hydrothermal activities in the northern part of the trough. In this note, the shell is carefully characterized and the sample locations with possible hydrothermal activity are given. it Is pointed out that the research of biogenic fossils to trace hydrothermal activity changes in venting time, strength fluctuations, evolution In chemical compositions and so on should be stressed in the future in addition to the study of the ecological characteristics of hydrothermal organisms.