433 resultados para NI(ACAC)(2)-METHYLALUMINOXANE CATALYST
Resumo:
The oxovanadium phosphonates (VO(P-204)(2) and VO(P-507)(2)) activated by various alkylaluminums (AlR3, R = Et, i-Bu, n-Oct; HAIR(2), R = Et, i-Bu) were examined in butadiene (Bd) polymerization. Both VO(P-204)(2) and VO(P-507)(2) showed higher activity than those of classical vanadium-based catalysts (e.g. VOCl3, V(acac)(3)). Among the examined catalysts, the VO(P-204)(2)/Al(Oct)(3) system (I) revealed the highest catalytic activity, giving the poly(Bd) bearing M-n of 3.76 x 10(4) g/mol, and M-w/M-n ratio of 2.9, when the [Al]/[V] molar ratio was 4.0 at 40 degrees C. The polymerization rate for I is of the first order with respect to the concentration of monomer. High thermal stability of I was found, since a fairly good catalytic activity was achieved even at 70 degrees C (polymer yield > 33%); the M-n value and M-w/M-n, ratio were independent of polymerization temperature in the range of 40-70 degrees C. By IR and DSC, the poly(Bd)s obtained had high 1,2-unit content (> 65%) with atactic configuration. The 1,2-unit content of the polymers obtained by I was nearly unchanged, regardless of variation of reaction conditions, i.e. [Al]/[V], ageing time, and reaction temperature, indicating the high stability of stereospecificity of the active sites.
Resumo:
The crystalline syndiotatic 1,2-polybutadiene was synthesized with a catalyst consisting of iron acetylacetonate (Fe(acac)(3))-triisobutylaluminum (Al(i-Bu)(3))-diethyl phosphite (DEP), and the effects of crystal growth conditions on morphology of thin films of the polymer were investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The polymer with melting point 179 degreesC was found to have 89.3% 1,2-content and 86.5% syndiotacticity by C-13 NMR measurement. The results of electron microscopic studies indicate that the solution-cast thin films of the syndiotatic 1,2-polybutadiene consist of lath-like lamellae with the c-axis perpendicular to the film plane, while a- and b-axes are in the film plane. The morphology of isothermally crystallized thin films of the polymer is temperature dependent. At lower crystallization temperatures (130 degreesC), a spherulitic structure consisting of flat-on lamellae is formed. With an increase in the crystallization temperature (e.g., at 140 degreesC), the spherulites and single faceted crystals coexist. At higher crystallization temperatures (150 degreesC), single crystals with a hexagonal prismatic shape are produced.
Resumo:
alpha-Diimine nickel catalyst hearing two allyl groups [ArN=C](2)C10H6NiBr2 (Ar = 4-allyl-2,6-(i-Pr)(2)C6H2)] (Cat-I) has been synthesized and characterized. The corresponding polymer-incorporated nickel catalysts PC and the SiO2-supported shell-core structure catalyst SC-1 were obtained by the co-polymerization of the olefin groups of Cat-1 with styrene in the presence of a radical initiator. Radical co-polymerizations with styrene in Solution were investigated in detail, and the compositions and molecular weight of the copolymers were determined. All three types of catalysts (Cat-1, PC and SC-1) have been investigated for ethylene polymerization. These catalysts were found to exhibit high activity in the presence of modified methylaluminoxane (MMAO) as a co-catalyst. Among them, the polymer-incorporated PC and SiO2 shell-core catalyst SC-1 displayed very high activity (similar to2.62 and similar to1.11 kg (mmol Ni)(-1) h(-1), respectively) with product molecular weights (M,) in the range 26 x 10(4) to 47 x 10(4) under 0.1 MPa ethylene pressure. The particle morphology of polyethylene produced by the shell-core structure catalyst SC-1 was improved.
Resumo:
Ethylene-propylene copolymerization, using [(Ph)NC(R-2)CHC(R-1)O](2)TiCl2 (R-1 = CF3, Ph, or t-Bu; R-2 = CH3 or CF3) titanium complexes activated with modified methylaluminoxane as a cocatalyst, was investigated. High-molecular-weight ethylene-propylene copolymers with relatively narrow molecular weight distributions and a broad range of chemical compositions were obtained. Substituents R-1 and R-2 influenced the copolymerization behavior, including the copolymerization activity, methylene sequence distribution, molecular weight, and polydispersity. With small steric hindrance at R-1 and R-2, one complex (R-1 = CF3; R-2 = CH3) displayed high catalytic activity and produced copolymers with high propylene incorporation but low molecular weight. The microstructures of the copolymers were analyzed with C-13 NMR to determine the methylene sequence distribution and number-average sequence lengths of uninterrupted methylene carbons.
Resumo:
The branched copolymers prepared from ethylene and alpha-olefins using rac-Et(Ind)(2)ZrCl2/MMAO catalyst system were studied. Both the absolute molecular weight ((M) over bar (W)) and the molecular size (radius of glyration, R-g) of the polymers eluting from gel permeation chromatography (GPC) columns were obtained simultaneously via a high temperature GPC coupled with a two-angle laser light scattering (TALLS) detector. The branched structures and performances of the copolymers display approximate molecular weight and molecular sizes were investigated. Wide angle X-ray diffraction analyses indicate that 16-carbon side branch could co-crystallize effectively with backbone chain at low alpha-olefin incorporation. The melt behaviors of the copolymers were studied by dynamic rheological measurements. Both branch length and comonomer content affect considerably the loss modulus, storage modulus and complex viscosity of the copolymers. The relationship between the dynamic-mechanical behavior and the comonomer content of the copolymers was also examined by dynamic-mechanical experiments.
Resumo:
Polymerizing 1,3-butadiene into syndiotactic 1,2-polybutadiene with art iron(III) catalyst system has been investigated. Activity of the catalyst was affected by the type of cocatalyst alkylaluminum and the phosphorus compound as an electron donor, molar ratio of catalyst components, and their aging sequence and aging time of the catalyst. The microstructure and configuration of the polymer was decided by the catalyst components, the higher [Al]/[Fe] molar ratio tending to yield syndiotactic 1,2-polybutadiene, while the higher [P]/[Fe] molar ratio favors the formation of amorphous 1,2-polybutadiene.
Resumo:
A series of 2,6-bis(imino)pyridyl iron and cobalt complexes bearing p-substituent [2,6-(ArN=CMe)(2)C5H3N]-MCl2 (Ar=2,6-Me2C6H3, 2,4,6-Me3C6H2, 2,6-Me-2-4-BrC6H2, 2,6-Me-2-4-ClC6H2, 2,4-Me-2-6-BrC6H2, 2,4-Me-(2)-6-ClC6H2, while M=Fe, Co) have been synthesized and investigated as catalysts for ethylene polymerization in the presence of modified methylaluminoxane as a cocatalyst. The electron effect and positions of the substitueni of pyridinebisimine ligands were observed to affect considerably catalyst activity and polymer property.
Resumo:
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen(2))(2)V4O12].5H(2)O (1) and [Ni(phen)(3)](2)[V4O12] . 17.5H(2)O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. P (1) over bar, a = 10.3366(10), b = 11.320(3), c = 13.268(3) Angstrom, alpha = 103.888(17)degrees, beta = 92.256(15)degrees, gamma = 107.444(14)degrees, Z = 1; C72H131N12Ni2O29.5V4 (2), triclinic. P (1) over bar, a = 12.305(3), b = 13.172(6), c = 15.133(4), alpha = 79.05(3)degrees, beta = 76.09(2)degrees, gamma = 74.66(3)degrees, Z = 1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59degrees < theta < 26.02degrees and 2.01degrees < 0 < 25.01degrees using the omega-scan technique, respectively. The structure of 1 consists of a [V4O12](4-) cluster covalently attached to two {Cd(phen)(2)}(2+) fragments, in which the [V4O12](4-) cluster adopts a chair-like configuration. In the structure of 2, the [V4O12](4-) cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the V4O12](4-) unit and crystallization water molecules.
Resumo:
Neutral Ni(II) salicylaldiminato complexes activated with modified methylaluminoxane as catalysts were used for the vinylic polymerization of norbornene. Catalyst activities of up to 7.08 x 10(4) kg(pol)/(mol(Ni) (.) h) and viscosity-average molecular weights of polymer up to 1.5 x 10(6) g/mol were observed at optimum conditions. Polynorbornenes are amorphous, soluble in organic solvents, highly stable, and show glass-transition temperatures around 390 degreesC. Catalyst activity, polymer yield, and polymer molecular weight can be controlled over a wide range by the variation of the reaction parameters such as the Al/Ni ratio, monomer/catalyst ratio, monomer concentration, polymerization reaction temperature, and time.
Resumo:
A novel compound [Ni(phen)(3)](2)[(SiMo10V1/2O40)-O-V((VO)-O-IV)(2)] . 2H(2)O has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the triclinic, system, space group P-1, a = 12.378(4) Angstrom, b = 14.148(5) Angstrom, c = 14.316(2) Angstrom, alpha = 105.91(2)degrees, beta = 95.31(2)degrees, gamma = 96.89(3)degrees, V = 2373.0(12) Angstrom(3), Z = 1, (lambdaMo(Kalpha)) = 0.71073 Angstrom, R1 (wR2) = 0.0869(0.2174). Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range of 1.51 < theta < 22.50degrees using the omega-scan technique. Empirical absorption correction (psi scan) was applied. The structure was solved by the direct method and refined by the Full-matrix least-squares on F-2 using the SHELXL-97 software. X-ray crystallographic study showed that the title compound contained a bi-capped alpha-Kegin-type [(SiMo10V2O40)-O-IV((VO)-O-IV)(2)](4-) polyoxoanion.
Resumo:
Tridentate ligand[(2,6-ArN=C(Me))(2)C5H3N](Ar=4-allyl-2,6-(i-Pr)(2)C6H3)(4)which contains allyl groups on each aryl ring was ready prepared and reacted with FeCl2. 4H(2)O to give the precatalyst [(2,6-ArN=C(CH3))(2)C5H3N]. FeCl2 (5). Compounds 2-5 were characterized by H-1 NMR, EI-MS,and IR. The complex 5 which was actived by methylaluminoxane(MAO) exhibits high activity for ethylene polymerization [1.9 x 10(6) g pE.(mol Fe . h)(-1) at 0 degreesC]. It was showed that the activity was decreased with increasing temperature and the polymer product was highly linear PE with (M) over bar (eta) varying from 50000 to 260000.
Resumo:
A novel mixed-valence molybdenum(IV, VI) arsenate(III), Ni(H2NCH2CH2NH2)(3)[((MoO6)-O-IV)(Mo6O18)-O-VI((As3O3)-O-III)(2)]H2O, hydrothermally synthesized and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. The polyanion cage derives from the Anderson structure, in which the central octahedron was filled up by molybdenum(IV) and it was capped on both sides by a novel As3O63- cyclo-triarsenate(III). The title compound had a high catalytic activity for the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid-solid biphase system. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Two new metal-ore supported transition metal complexes, E{M(phen)(2)}(2)(Mo8O26) (M = Ni or CO; phen = 1,10-phenanthroline) are synthesized by a hydrothermal method and characterized by X-ray crystallography, showing that the octamolybdate possesses a novel unprecedented structure and that [M(phen)(2)](2+) units are covalently bonded to the [Mo8O26](4-) cluster.
Resumo:
The catalytic partial oxidation of methane to syngas over Ni/Al2O3, Pt/Al2O3 and a series of Pt - Ni/Al2O3 catalysts was investigated. It was found that Pt - Ni/Al2O3 catalysts exhibit higher activity and stability than Ni/Al2O3 and Pt/Al2O3. TPR and TPD methods were used to characterize Pt - Ni bimetallic interactions in the catalysts. A series of Pt - Ni/Al2O3 catalysts and unsupported Pt - Ni samples were studied by XRD and XPS. It was found the formation of Pt - Ni alloy in the Pt - Ni/Al2O3 catalysts and the enrichment of platinum on the surface of the catalysts. It is concluded that the higher activity and stability of Pt - Ni/Al2O3 catalysts were caused by Pt - Ni bimetallic interactions.
Resumo:
The polymerization of butadiene(Bd), isoprene(Ip) and styrene(St) has been examined using the six catalyst systems composed of lanthanocene, (C5H9Cp)(2)NdCl(I), (C5H9Cp)(2)SmCl(II), (MeCp)(2)SmOAr'(III), (Ind)(2)NdCl(IV), Me2Si(Ind)(2)NdCl(V) and (Flu)(2)NdCl(VI), and methylaluminoxane(MAO) respectively. All of them can be used to form the polyisoprene with molecular weights of 1 to 10 thousand and cis-1,4-unit contents of 41 to 47%. (I), (II) and (III) of them can be also used to form the polybutadiene with molecular weights of 10 to 20 thousand and cis-1,4-unit contents of 62 to 78%. In addition, the catalysts from (II) to (V) are still active for St polymerization and (II) of them gives a syndio -rich random polystyrene. It is noteworthy that (II) and (III) are active for homopolymerization of Bd, Ip and St in the same polymerization condition.