248 resultados para ND-YVO4 LASER


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experimental trials of autogenous deep penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 5.0 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser output power, welding velocity and defocusing distance on the morphology, welding depth and width as well as quality of the welded seam were investigated. Results show that full keyhole welding is not formed on both K4.18 and 42CrMo side, simultaneously, due to the relatively low output power. Partial fusion is observed on the welded seam near 42CrMo side because of the large disparity of thermal-physical and high-temperature mechanical properties of these two materials. Tile rnicrohardness of the laser-welded joint was also examined and analyzed. It is suggested that applying negative defocusing in the range of Raylei length can increase the welding depth and improve tile coupling efficiency of the laser materials interaction. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A hot particle jet is induced as a laser pulse from a free oscillated Nd:YAG laser focused on a coal target. The particle jet successfully initiates combustion in a premixed combustible gas consisting of hydrogen, oxygen, and air. The experiment reveals that the ionization of the particle jet is enhanced during the laser pulse. This characteristic is attributed to the electron cascade process and the ionization of the particles or molecules of the target. The initial free electrons, which are ablated from the coal target, are accelerated by the laser pulse through the inverse Bremsstrahlung process and then collide with the neutrals in the jet, causing the latter to be ionized.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We measured spectroscopic and laser action properties of a novel 8-position substituted pyrromethene-BF2, namely 1,3,5,7-tetramethyl-2,6-diethyl-8-n-propyl pyrromethene-BF2 complex. The laser action was performed with the corresponding dye solution in ethanol, which was placed in a Littman-type laser cavity pumped by the second harmonic of a Q-switched Nd:YAG laser. The spectroscopic measurements clearly indicated that the corresponding dye solution in ethanol exhibited intense absorption in the visible spectral region with large fluorescence quantum yield. It possesses rather low triplet-triplet absorption in the spectral region 460-550 nm and almost negligible triplet-triplet absorption in the lasing spectral region. As a consequence, it lases nearly as efficiently as commercially available benchmark laser dyes such as Rhodamine-6G and outperformed them in wavelength tunability in our laser cavity and pump geometry. (C) 2002 Optical Society of America.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The dynamic interaction processes between a nano-second laser pulse and a gas-puff target, such as those of plasma formation, laser heating, and x-ray emission, have been investigated quantitatively. Time and space-resolved x-ray and optical measurement techniques were used in order to investigate time-resolved laser absorption and subsequent x-ray generation. Efficient absorption of the incident laser energy into the gas-puff target of 17%, 12%, 38%, and 91% for neon, argon, krypton, and xenon, respectively, was shown experimentally. It was found that the laser absorption starts and, simultaneously, soft x-ray emission occurs. The soft x-ray lasts much longer than the laser pulse due to the recombination. Temporal evolution of the soft x-ray emission region was analyzed by comparing the experimental results to the results of the model calculation, in which the laser light propagation through a gas-puff plasma was taken into account. (C) 2003 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 120TW/36fs laser system based on Ti:sapphire chirped-pulse amplification (CPA) has been successfully established in our lab. The final four pass Ti:sapphire amplifier pumped by an energetic single-shot Nd:YAG-Nd:glass laser was designed and optimized. With 24J/8ns pump energy at 532 nm, 300 mJ/220 ps chirped pulse was amplified to 5.98 J in this amplifier, and a total saturated gain of similar to 20 was achieved. The focused intensity of compressed beam could reach to 10(20) W/cm(2) with the M-2 of similar to 2.0. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

基于对称双侧激光二极管(LD)抽运Nd:GGG(掺钕钆镓石榴石)激光晶体板条,从热传导基本方程出发,以废热等效于内热源模型为前提,利用有限元分析软件ANSYS对Nd:GGG板条在热容工作下的瞬态温度场及应力场进行了数值模拟,分析了在不同边界条件下温度和应力随时间和空间的变化特性及其热致变形。计算结果表明:在激光发射阶段,边界非绝热使得板条在垂直光轴方向产生温度梯度,由此产生的折射率梯度和应力梯度导致距离光轴最远的板条边缘和光轴处产生约0.2μm的变形量。同时模拟了冷却阶段空气对流冷却、水循环冷却及喷雾冷却

Relevância:

90.00% 90.00%

Publicador:

Resumo:

实验研究了高重复率、大功率半导体激光二极管阵列(LDA)侧面环绕抽运的Nd:YAG激光放大器的放大特性、热焦距变化和热致双折射效应引起的退偏特性。偏振光绎千赫兹高功率单通激光放大器,获得约3倍的光脉冲能量放大,脉冲宽度基本保持不变,其输出的P分量与S分量的能量比趋于常数3:1,实验测得的能量放大倍率及放大光束的椭圆偏振度与理论预期吻合很好。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

对激光二极管(LD)抽运固体激光器中大功率线阵激光二极管三向对称侧面抽运的漫反射腔结构进行了研究。激光器使用Nd:YAG作为激光晶体,电光器件材料为KD^*P晶体,漫反射体为陶瓷材料。实验表明,抽运光的利用率和均匀性有较大提高。在重复频率为10Hz下,实现了脉冲宽度8ns,最大平均功率为近2W的1064nm红外激光输出,激光器的效率有显著提高。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

研究了激光二极管(LD)侧向抽运的Nd:YAG陶瓷电光调Q激光器的激光输出特性。该激光器采用九组激光二极管线阵列(LDA)侧面紧密环绕均匀排布的抽运结构,并用微通道热汇冷却技术冷却。在电光调Q方式下,重复频率为100Hz,抽运单脉冲能量为416mJ时,用尺寸为庐5mm×75mm,掺杂原子数分数为1%的Nd:YAG陶瓷棒,获得50mJ的1064nm激光输出,脉冲宽度为12ns,斜率效率达24%。并实验测量和分析了偏振片,KD^*P晶体,四分之一波片等调Q器件的插入损耗。测量了输出激光时间波形和光斑的光强空间

Relevância:

90.00% 90.00%

Publicador:

Resumo:

报道了激光二极管(LD)抽运的Nd:YLF激光器,采用平凹腔结构,分别用两片Cr^4+:YAG可饱和吸收晶体,实现了被动调Q,输出激光波长为1053nm。采用厚度为0.5mm小信号透过率为90%的Cr^4+ YAG,在泵浦功率最大为17W时,输出脉冲宽度为60.6ns,平均功率为1.5W,重复频率为9.5kHz,单脉冲能量为157.9mJ;采用厚度为0.55mm小信号透过率为95%的Cr^4+ YAG,在泵浦功率最大为17W时,输出脉冲宽度为68.6ns,平均功率为1.35W,重复频率为14kHz,单脉冲

Relevância:

90.00% 90.00%

Publicador:

Resumo:

对高平均功率输出的激光二极管侧面抽运电光调Q倍频 Nd:YAG激光器进行了研究,当采用90个60W的脉冲激光二极管阵列抽运时,在重复频率为10Hz下,实现了最大平均功率为1180mW的1064nm红外激光输出,光-光转换效率为11%。腔外倍频获得600mW的532nm绿光输出,倍频效率达到50%以上。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

采用燃烧法制备了Nd:YSAG粉体,经过成型、素烧,最终在氢气气氛中烧结制备了Nd:YSAG透明陶瓷.测试结果表明,Nd:YSAG透明陶瓷具有荧光谱线较宽,荧光寿命较长的特点.激光实验得到的激光输出,斜率效率为23.6%,输出功率为0.36W,输出激光的谱线分布较宽.