202 resultados para Mitochondrial-dna Sequences
MitoTool: A web server for the analysis and retrieval of human mitochondrial DNA sequence variations
Resumo:
The complete mitochondrial DNA (mtDNA) cytochrome b gene (1140 bp) was sequenced in Herzenstein macrocephalus and Gymnocypris namensis and in 13 other species and sub-species (n = 22), representing four closely related genera in the subfamily Schizothoracinae. Conflicting taxonomies of H. macrocephalus and G. namensis have been proposed because of the character instability among individuals. Parsimony, maximum likelihood and Bayesian methods produced phylogenetic trees with the same topology and resolved several distinctive clades. Previous taxonomic treatments, which variously placed these two species of separate genera or as sub-species, are inconsistent with the mtDNA phylogeny. Both H. macrocephalus and G. namensis appear in a well-supported clade, which also includes nine species of Schizopygopsis, and hence should be transferred to the genus Schizopygopsis. Morphological changes are further illustrated, and their adaptive evolution in response to the local habitat shifts during the speciation process appears to be responsible for conflicting views on the systematics of these two species and hence the contrasting taxonomic treatments. These species are endemic to the Qinghai-Tibetan Plateau, a region with a history of geological activity and a rich diversity of habitats that may have result in the parallel and reversal evolution of some morphological characters used in their taxonomies. Our results further suggest that speciation and morphological evolution of fishes in this region may be more complex than those previously expected. (c) 2007 The Authors Journal compilation (c) 2007 The Fisheries Society of the British Isles.
Resumo:
Background: The domestication of plants and animals was extremely important anthropologically. Previous studies have revealed a general tendency for populations of livestock species to include deeply divergent maternal lineages, indicating that they were domesticated in multiple, independent events from genetically discrete wild populations. However, in water buffalo, there are suggestions that a similar deep maternal bifurcation may have originated from a single population. These hypotheses have rarely been rigorously tested because of a lack of sufficient wild samples. To investigate the origin of the domestic yak (Poephagus grunnies), we analyzed 637 bp of maternal inherited mtDNA from 13 wild yaks (including eight wild yaks from a small population in west Qinghai) and 250 domesticated yaks from major herding regions.Results: The domestic yak populations had two deeply divergent phylogenetic groups with a divergence time of > 100,000 yrs BP. We here show that haplotypes clustering with two deeply divergent maternal lineages in domesticated yaks occur in a single, small, wild population. This finding suggests that all domestic yaks are derived from a single wild gene pool. However, there is no clear correlation of the mtDNA phylogenetic clades and the 10 morphological types of sampled yaks indicating that the latter diversified recently. Relatively high diversity was found in Qinghai and Tibet around the current wild distribution, in accordance with previous suggestions that the earliest domestications occurred in this region. Conventional molecular clock estimation led to an unrealistic early dating of the start of the domestication. However, Bayesian estimation of the coalescence time allowing a relaxation of the mutation rateConclusion: The information gathered here and the previous studies of other animals show that the demographic histories of domestication of livestock species were highly diverse despite the common general feature of deeply divergent maternal lineages. The results further suggest that domestication of local wild prey ungulate animals was a common occurrence during the development of human civilization following the postglacial colonization in different locations of the world, including the high, arid Qinghai-Tibetan Plateau.
Resumo:
Background and Aims The systematic position of the genus Metagentiana and its phylogenetic relationships with Crawfurdia, Gentiana and Tripterospermum have not been explicitly addressed. These four genera belong to one of two subtribes (Gentianinae) of Gentianeae. The aim of this paper is to examine the systematic position of Crawfurdia, Metagentiana and Tripterospermum and to clarify their phylogenetic affinities more clearly using ITS and trnL intron sequences.Methods Nucleotide sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA and the plastid DNA trnL (UAA) intron were analysed phylogenetically. Ten of fourteen Metagentiana species were sampled, together with 40 species of other genera in the subtribe Gentianinae.Key Results The data support several previously published conclusions relating to the separation of Metagentiana from Gentiana and its closer relationships to Crawfurdia and Tripterospermum based on studies of gross morphology, floral anatomy, chromosomes, palynology, embryology and previous molecular data. The molecular clock hypothesis for the tested sequences in subtribe Gentianinae was not supported by the data (P < 0.05), so the clock-independent non-parametric rate smoothing method was used to estimate divergence time. This indicates that the separation of Crawfurdia, Metagentiana and Tripterospermum from Gentiana occurred about 11.4-21.4 Mya (million years ago), and the current species of these three genera diverged at times ranging from 0.4 to 6.2 Mya.Conclusions The molecular analyses revealed that Crawfurdia, Metagentiana and Tripterospermum do not merit status as three separate genera, because sampled species of Crawfurdia and Tripterospermum are embedded within Metagentiana. The speciation and rapid radiation of these three genera is likely to have occurred in western China as a result of upthrust of the Himalayas during the late Miocene and the Pleistocene.
Resumo:
Phylogenetic relationships of six species of Ochotona were investigated using mitochondrial DNA (mtDNA) restriction-site analysis. The phylogenetic tree constructed using PAUP was based on 62 phylogenetically informative sites with O. erythrotis designated as an outgroup. Two clades were evident. One contained O. curzoniae, O. huangensis, and O. thibetana. in the second, O. daurica was a sister taxon of O. cansus. The five species appear to come from different maternal lineages. The branching structure of the tree and sequence divergence confirm that huangensis and cansus are distinct species, and that mol-osa is a synonym of O. cansus rather than O. thibetana. Divergence time, estimated from genetic distances, indicates that the ancestors of the two maternal lineages diverged ca. 6.5 x 10(6) years ago. O. curzoniae diverged from O. huangensis, and O. daurica diverged from O. cansus, at about the same time (ca. 3.4 x 10(6) years ago). These data suggest a period of rapid radiation of the genus Ochotona in China, perhaps during the late Pliocene. These calculations correspond roughly to tectonic events and environmental changes in China throughout this period, and appear to be substantiated by the fossil record.
Resumo:
Restriction site mapping of mitochondrial DNA (mtDNA) with 16 restriction endonucleases was used to examine the phylogenetic relationships of Ochotona cansus, O. huangensis, O. thibetana, O. curzoniae and O. erythrotis. A 1-kb length variation between O. erythrotis of subgenus Pika and other four species of subgenus Ochotona was observed, which may be a useful genetic marker for identifying the two subgenera. The phylogenetic tree constructed using PAUP based on 61 phylogenetically informative sites suggests that O. erythrotis diverged first, followed by O. cansus, while O. curzoniae and O. huangensis are sister taxa related to O. thibetana, The results indicate that both O. cansus and O. huangensis should be treated as independent species. If the base substitution rate of pikas mtDNA was 2% per million years, then the divergence time of the two subgenera, Pika and Ochotana, is about 8.8 Ma ago of late Miocence, middle Bao-dian of Chinese mammalian age, and the divergence of the four species in subgenus Ochotona would have occurred about 2.5 - 4.2 Ma ago, Yushean of Chinese mammalian age. This calculation appears to be substantiated by the fossil record.
Resumo:
Microsatellites and mitochondrial DNA sequences were studied for the two subspecies of orangutans (Pongo pygmaeus), which are located in Borneo (P. p, pygmaeus) and Sumatra (P. p. abelii), respectively. Both subspecies possess marked genetic diversity. Ge
Resumo:
We conducted phylogenetic analyses to identify the closest related living relatives of the Xizang and Sichuan hot-spring snakes (T baileyi and T. zhaoermii) endemic to the Tibetan Plateau, using mitochondrial DNA sequences (cyt b, ND4) from eight specimen
Resumo:
Karyotype and chromosomal location of the major ribosomal RNA genes (rDNA) were studied using fluorescence in situ hybridization (FISH) in five species of Crassostrea: three Asian-Pacific species (C. gigas, C. plicatula, and C. ariakensis) and two Atlantic species (C. virginica and C. rhizophorae). FISH probes were made by PCR amplification of the intergenic transcribed spacer between the 18S and 5.8S rRNA genes, and labeled with digoxigenin-11-dUTP. All five species had a haploid number of 10 chromosomes. The Atlantic species had 1-2 submetacentric chromosomes, while the three Pacific species had none. FISH with metaphase chromosomes detected a single telomeric locus for rDNA in all five species without any variation. In all three Pacific species, rDNA was located on the long arm of Chromosome 10 (10q)-the smallest chromosome. In the two Atlantic species, rDNA was located on the short arm of Chromosome 2 (2p)-the second longest chromosome. A review of other studies reveals the same distribution of NOR sites (putative rDNA loci) in three other species: on 10q in C. sikamea and C. angulata from the Pacific Ocean and on 2p in C. gasar from the western Atlantic. All data support the conclusion that differences in size and shape of the rDNA-bearing chromosome represent a major divide between Asian-Pacific and Atlantic species of Crassostrea. This finding suggests that chromosomal divergence can occur under seemingly conserved karyotypes and may play a role in reproductive isolation and speciation.
Resumo:
Phylogenetic relationships among representative species of the subfamily Raninae were investigated using approximately 2000 base pairs of DNA sequences from two mitochondrial (12S rRNA, 16S rRNA) and two nuclear (tyrosinase, rhodopsin) genes. Phylogenetic
Resumo:
The phylogenetic relationships within the family Penaeidae are examined based on mitochondrial 16S rRNA gene sequence analysis of 30 species from 20 genera. The analysis generally supports the three- tribe scheme proposed by Burkenroad ( 1983) but it is not consistent with the five- group classification of Kubo ( 1949). Three clades are resolved: ( Penaeus sensu stricto + Fenneropenaeus + Litopenaeus + Farfantepenaeus + Marsupenaeus + Melicertus + Funchalia + Heteropenaeus), ( Metapenaeus + Parapenaeopsis + Xiphopenaeus + Rimapenaeus + Megokris + Trachysalambria) and ( Metapenaeopsis + Penaeopsis + Parapenaeus), corresponding to the Penaeini, Trachypenaeini and Parapenaeini respectively, while the affinities of Atypopenaeus and Trachypenaeopsis are obscure. The molecular data support that Miyadiella represents the juvenile stage of Atypopenaeus. Within the Trachypenaeini, Trachypenaeus sensu lato is clearly paraphyletic, while the monophyly of Penaeus sensu lato in the Penaeini is questionable.
Resumo:
Hybridization between yak Poephagus grunniens and taurine Bos taurus or indicine B. indicus cattle has been widely practiced throughout the yak geographical range, and gene flow is expected to have occurred between these species. To assess the impact of cattle admixture on domestic yak, we examined 1076 domestic yak from 29 populations collected in China, Bhutan, Nepal, India, Pakistan, Kyrgyzstan, Mongolia and Russia using mitochondrial DNA and 17 autosomal microsatellite loci. A cattle diagnostic marker-based analysis reveals cattle-specific mtDNA and/or autosomal microsatellite allele introgression in 127 yak individuals from 22 populations. The mean level of cattle admixture across the populations, calculated using allelic information at 17 autosomal microsatellite loci, remains relatively low (mY(cattle) = 2.66 +/- 0.53% and Q(cattle) = 0.69 +/- 2.58%), although it varies a lot across populations as well as among individuals within population. Although the level of cattle admixture shows a clear geographical structure, with higher levels of admixture in the Qinghai-Tibetan Plateau and Mongolian and Russian regions, and lower levels in the Himalayan and Pamir Plateau region, our results indicate that the level of cattle admixture is not significantly correlated with the altitude across geographical regions as well as within geographical region. Although yak-cattle hybridization is primarily driven to produce F-1 hybrids, our results show that the subsequent gene flow between yak and cattle took place and has affected contemporary genetic make-up of domestic yak. To protect yak genetic integrity, hybridization between yak and cattle should be tightly controlled.