171 resultados para Migration, Internal -- Sweden -- Stockholm
Resumo:
A scheme based on a W-shaped axicon mirror device for total-internal-reflection fluorescence microscopy (TIRFM) is presented. This approach combines the advantages of higher efficiency compared with traditional TIRFM, adjustable illumination area, and simple switching between wide-field and TIRF imaging modes. TIRF images obtained with this approach are free of shadow artifacts and of interference fringes. Example micrographs of fluorescently labeled polystyrene beads, of Convallaria majalis tissue, and of Propidium-iodide-labeled Chinese hamster ovary cells are shown, and the capabilities of the scheme are discussed. (C) 2010 Optical Society of America
Resumo:
Using the level-set method and the continuum interface model, the axisymmetric thermocapillary migration of gas bubbles in an immiscible bulk liquid with a temperature gradient at moderate to large Marangoni number is simulated numerically. Constant material properties of the two phases are assumed. Steady state of the motion can always be reached. The terminal migration velocity decreases monotonously with the increase of the Marangoni number due to the wrapping of isotherms around the front surface of the bubble. Good agreements with space experimental data and previous theoretical and numerical studies in the literature are evident. Slight deformation of bubble is observed, but no distinct influence on the motion occurs. It is also found that the influence of the convective transport of heat inside bubbles cannot be neglected at finite Marangoni number, while the influence of the convective transport of momentum inside bubbles may be actually negligible.
Resumo:
An approximate theoretical expression for the current induced by long internal solitary waves is presented when the ocean is continuously or two-layer stratified. Particular attention is paid to characterizing velocity fields in terms of magnitude, flow components, and their temporal evolution/spatial distribution. For the two-layer case, the effects of the upper/lower layer depths and the relative layer density difference upon the induced current are further studied. The results show that the horizontal components are basically uniform in each layer with a shear at the interface. In contrast, the vertical counterparts vary monotonically in the direction of the water depth in each layer while they change sign across the interface or when the wave peak passes through. In addition, though the vertical components are generally one order of magnitude smaller than the horizontal ones, they can never be neglected in predicting the heave response of floating platforms in gravitationally neutral balance. Comparisons are made between the partial theoretical results and the observational field data. Future research directions regarding the internal wave induced flow field are also indicated.
Resumo:
The generation of internal gravity waves by barotropic tidal flow passing over a two-dimensional topography is investigated. Rather than calculating the conversion of tidal energy, this study focuses on delineating the geometric characteristics of the spatial structure of the resulting internal wave fields (i.e., the configurations of the internal beams and their horizontal projections) which have usually been ignored. it is found that the various possible wave types can be demarcated by three characteristic frequencies: the tidal frequency, wo; the buoyancy frequency, N; and the vertical component of the Coriolis vector or earth's rotation.f. When different possibilities arising from the sequence of these frequencies are considered, there occur 12 kinds of wave structures in the full 3D space in contrast to the 5 kinds identified by the 2D theory. The constant wave phase lines may form as ellipses or hyperbolic lines on the horizontal plane, provided the buoyancy frequency is greater or less than the tidal frequency. The effect that stems from the consideration of the basic flow is also found, which not only serves as the reason for the occurrence of higtter harmonics but also increases the wave strength in the direction of basic flow. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to investigate the mechanism of small scale sand-wave migration. According to the environmental characteristic of the north gulf of South China Sea, a quasi-3D mechanics model has been built for simulating the small scale sand wave migration. The calculation results are shown to be consistent with the observed data in the trough of sand ridge. Considering the effect of environmental actions and sand wave features, we develop an effective formula to predict sand-wave migration. It is indicated that the physical models should be used to predict the migration of the small scale sand-wave, which is rarely dominated by wave activity.
Resumo:
genetics, such as: population size, reproduction, mating system, growth, development,genetic structure and systematics status; The main results are presented below: The seasonal variation of the operational sexual ratio of this animal was found in the field and the ration always bias the female in the breeding season. Aiming at this character and considering the distance of time and space of both sexual habitat in breeding season, we census female population first by toe-clipping mark-recapture method, then estimated the population size with the definitive sexual ratio. Up to now, this species was found only at the Beilun district of the Ningbo City. The population size of the Ruiyan Temple Forest Park approximates to 369. The status of this population is extremely endangered, so besides protecting this population at the original locality, we also suggested to breed the salamander in fenced locality and to hatch embryos artificially, and send metamorphosed juveniles back to nature. We can transfer some individuals to other similar habitats or breed them under artificial conditions for saving this species from extinction. The early developmental stage of the Chinhai salamander is the same as its relative species, E. andersoni. Their balanceres are poorly developed and disappear very early. Temperature and moisture significantly influence the embryonic development of the Chinhai salamander. The embryonic stage is approx. 29 days under room temperature. The hatchling grows in a logarithmic curve. The larvae stage in water is approx. 58- 88 days. Many factors influence the nomal development, including two aspects of internal and external. Due to these factors, the effective protected measures were presented in detail. The breeding migration of E. chinhaiensis takes place at late March~late April every year. This salamander's hatching rate is high, but the rate of hatchling migrating into water is low. The average effectiveness of all the nest sites is 36.7%. The maternal self-conservation was contrary to the reproductive success of the egg-laying strategy. In the strategy of egg-laying behavior, the first factor selected by the female was its self-conservation, the second is embryonic survival rate, and the last is rate of hatchling survival rate. The oviposition selection is significant for the survival of the larvae. Based on the analysis of the evolutionary process of reproductive behaviors nad egg-laying site selections of all genera of the family Salamandridae, we deduced that perhaps Echinotriton is a transitional type in the evolutionary process from water to land. Due to its location in the adaptive stage in the terrestrial evolution, Echinotriton chinhaiensis's terrestrial nest may be one of important reason that causes this species to be endangered. The genetic deversity analysis shows that although the population size of the Chinhai salamander is quite small compared to other Chinese salamandrid species, the genetic diversity of this population is not reduce remarkably. We explain this phenomena with the polygamy mating system of this species. The result of 4 families' parenthood determinations shows that the parenhood determination can be taken without any paternal information. The "children" of every female include rich genetic information from at least two "fathers". It implies that female Chinhai salamander mates more than once with different males in a breeding season. The molecular evidence, the behavioral observation evidences and the sperm evidence in the female cloaca proved that this species has a polygamy mating system. The kin recognition in the mating of adult salamander was first discussed. The taxonomic status and phylogenetic relationships of 12 species representing 6 genera in the family Salamandridae were studied using DNA fingerprinting. The results showed that the DNA fingerprinting. The results showed that the DNA fingerprinting patterns demonstrated rich genetic diversity and species diversity, and also revealed the taxonomic status and phylogenetic relationshipes of higher taxa to a certain extent. The results are highly consistent with those obtained from the studies based on the morphology, ecology, cytology and molecular biology. The compreshensive analysis indicate that Tylototrition hainanensis and T. wenxianensis should be valid species; Echinotriton should be a valid genus;Tylotortriton is a natural cluster; Tylotortriton asperrimus should be put in Tylototrition rather than in Echinotriton, Hypselotriton and Allomestriton are synonyms of Cynops and Paramesotriton, respectively. There are three main groups in Chinese salamandride: Cynops, Paramesotriton and Pachytrition from the first group, the species of the Tylototriton from the second, and E. chinhaiensis composes the third.
Resumo:
Pellet target is one of the main candidate targets in CSRm (cooler storage ring’s main ring) for hadron physics studies. Pellet speed is an important physical parameter for the target. Larger pellet speed could shorten the interacting time interval between the pellet and the cyclotron beam, and thus results in a small temperature variation for the pellet. This could make the pellet facility work in a stable condition. A fluid dynamic simulation was carried out for the pellet speed, and it was found that the maximum speed for the target pellet may be restricted to about 100 m/s even if all working parameters were set to their optimal values.
Resumo:
IEECAS SKLLQG