111 resultados para Melt Compositions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon, nitrogen, phosphorus, silicon composition of cultured two different sized phytoplankton common species of Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay were measured. Carbon, nitrogen, phosphorus, silicon contents in cell were. obvious higher in T. rotula than in S. costatum, but the percents of nitrogen, phosphorus, silicon contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of nitrogen,phosphorus,silicon in S. costatum were much higher than those in T. rotula, particularly silicon, the former was 6.4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilating silicon, which is beneficial to its becoming a major dominant species in relative short silicon of the Jiaozhou Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different sized suspended particulates (mainly phytoplankton) in the Jiaozhou Bay, which was caused by the changes of environment. High contents of carbon, nitrogon and relative low phosporus,silicon, high molar ratio of nitrogen to phosphorus (far higher than Redfield value) and low ratio of silicon to phosphorus and silicon to nitrogen (far lower than Redfield values) in the two diatoms and different sized suspended particulates were consistent with those in the seawater. Relative short silicon in the seawater and phytoplankton showed that silicon was possibly affectting phytoplankton growth in the Jiaozhou Bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gakkel Ridge in Arctic Ocean is the ulstraslow spreading ridge in the world with a full spreading rate decreasing from 14 mm/yr in the western end to 7mm/yr in the eastern end. To study the histories of partial melting and melt referilization occurred in the oceanic mantle beneath Gakkel Ridge, both extremely fresh and altered abyssal peridotites from two dredge hauls (PS66-238 and HLY0102-D70) have been selected in this research. Major and trace element data of the residual minerals suggest that all samples have been refertilized by late enriched melts after low to moderate degrees (3-12%) of partial melting in the stability field of spinel, whereas some samples also inherited signatures of partial melting in stability field of garnet. Os isotopic compositions of Gakkel samples have not been significantly affected by late processes, e.g., seawater alteration and melt refertilzaiton. Samples from both dredge hauls have similar range of 187Os/188Os, from strongly unradiogenic (~0.114) in the harzburgites to approximating the inferred values of PUM (primitive upper mantle) in some lherzolites (~0.129). Inherited ancient depletion events in the harzburgites with Re-depletion age up to 2 billion years are unrelevant to the recent genesis of MORB (mid-ocean ridge basalts) beneath Gakkel Ridge. Comparisons of highly siderophile elements (HSEs) between the fresh and altered samples suggested both Pd and Re were affected and thus are mobile during seawater alteration, whereas the other HSEs (i.e., Os, Ir, Ru an Pt) are stable. The fractionated HSEs patterns in the harzburgites suggest both PPGEs (Pt and Pd) and Re can be fractionated from IPGEs (Os, Ir and Ru) at low degree of partial melting, which might be due to physical dredging of sulfide melts by silicate melts rather than equilibrium partitioning between residues and silicate melts. Inferred HSEs budget of the PUM confirm the previous study that both Ru/Ir and Pd/Ir are suprachondritic in the PUM. Some modifications of late-veneer hypothesis are required in light of the unique PUM composition. HSEs and Os isotopic compositions of Gakkel abyssal peridotites indicate the oceanic mantle is highly heterogeneous within a scale of one dredge haul (<5 km). Both depleted and fertile mantle domains are likely to be mechanically juxtaposed in the asthenosphere in a state of ‘plum pudding’. Widely distribution of ancient depleted components in the asthenosphere suggests that DMM (depleted MORB mantle) should not be synonymous with the MORB source. The later is just the fertile part of the former, i.e., the depleted components in the DMM do not or contribute little to the genesis of MORB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Western Qinling, a conjunction region of the North China Craton, the Yangtze Craton and the Tibetan Plateau, has very complicated history of geologic and tectonic evolution. Previous studies mainly focus on tectonics and petrology of volcanic rocks in the western Qinling. Therefore, little is known about the Cenozoic lithospheric mantle beneath the western Qinling. Mafic, ultramafic and/or alkaline volcanic rocks and their entrained mantle peridotitic xenoliths and xenocrysts are known as samples directly from the lithospheric mantle. Their petrological and geochemical characteristics can reflect the nature and deep processes of the lithospheric mantle. Cenozoic volcanic rocks in the western Qinling contain abundant mantle xenoliths and xenocrysts, which provide us an opportunity to probe the lithospheric mantle beneath this region and a new dimension to insight into geologic evolution. Cenozoic volcanic rocks (7-23 Ma) from the western Qinling are sparsely distributed in the Lixian-Dangchang-Xihe Counties, Gansu Province, China. Volcanic rocks contain plenty of mantle-derived xenoliths, including spinel lherzolites with subordinate wehrlite, dunite, olivine websterite, clinopyroxenite and garnet lherzolite, and few olivine, clinopyroxene and spinel xenocrysts. These peridotitic xenoliths show clear deformed textures and their major minerals show excellent orientation. Thus, these peridotites are typical deformed peridotites. Olivine xenocrysts have clearly-zoned textures. The peridotitic xenoliths can be divided into two groups based on their compositions, namely, the H-type and L-type. The H-type peridotites are characterized by high Fo (>90) in olivines in which fine-grained ones have higher Fo than the coarse grains, low CaO (<20 %) in clinopyroxenes, high Cr# (>40) in spinels and high equilibration temperatures. They may represent the refractory lithospheric mantle. In contrast, the L-type peridotites contain low Fo (<90) olivines (with lower Fo in fine-grained olivines), high CaO (>20 %) clinopyroxenes, low Cr# (<20) spinels and low equilibration temperatures. They experienced low degree of partial melting. The Cenozoic lithospheric mantle beneath the western Qinling was refractory in major element compositions based on the mineral compositions of xenoliths and xenocrysts and experienced complicated deep processes. The lithospheric mantle was modified by shear deformation due to the diapirism of asthenosphere and strong tectonic movements including the collision between North China Craton and Yangze Craton and the uplift of Tibetan Plateau, and then underwent metasomatism with a hydrous, Na, Ti and Cr enriched melt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, thanks to the improvement of analytical methods and the use of MC-ICP-MS, Fe isotope can be measured precisely. Fe isotope shows considerable variation both in biological and inorganic processes (from low T to high T) in nature, Therefore, Fe isotope has become one of the exciting frontier sciences and has favorable prospects of the application to the geosciences and life sciences. Based on a comprehensive review of available references in the related field, this study focuses on the development of techniques for high-precision measurement of iron isotope using MC-ICP-MS, and application of the techniques developed to study the Fe isotopes as well as major and trace element compositions of minerals (Ol, Opx, Cpx and Sp) from spinel peridotitic xenoliths from Cenozoic alkaline basalts to investigate Fe isotopic features of the lithospheric mantle beneath the North China Craton. The minerals from these xenoliths are similar to those off-cratonic peridotites world-wide, but are remarkably different from those on-cratonic peridotites and clinopyroxenes from these spinel lherzolites exhibit two types of chondrite-normalized REE patterns i.e. LREE-depleted and flat or spoon-shaped. It is noted that total abundances of REE in clinopyroxenes from these peridotites show a broad negative correlation with Cr# numbers of Cpx and Sp. The Fe isotope results show that the spinel peridotitic xenoliths have small but distinguishable Fe isotopic variations in minerals (generally Ol < Opx < Cpx) and samples, and the isotopic range in spinel is relatively large. Positive linear relationship with the ε57Fecpx/ε57Feopx ratio close to one unit has been observed between Fe isotopes of coexistent Opx and Cpx, indicating that the Cpx and Opx have generally reached Fe isotopic equilibrium. However, Fe isotopes between the Ol and Sp show apparent disequilibrium. The broadly negative correlation between mineral Fe isotopes and oxygen fugacity (fo2), metasomatic indexes such as spinel Cr#, (La/Yb) N and (La/Sm) N ratios of clinopyroxenes suggest that Fe isotopic variations in different minerals and peridotites were probably produced by melt-peridotite interaction. This study further confirms the previous observation that the lithospheric mantle has distinguishable and heterogeneous Fe isotopic variations at a scale of xenoliths. Mantle metasomatism that induces the interaction of the lithospheric mantle peridotite with metasomatic agent is a most potential mechanism for the Fe isotope fractionation in mantle peridotites. Therefore, Fe isotope could be a new and powerful tool to probe the evolution of the lithospheric mantle. We also report mineral compositions, clinopyroxene trace element concentrations and Sr-Nd isotopes for newly-discovered phlogopite-bearing spinel lherzolite and olivine clinopyroxenite xenoliths from three different localities (Hannuoba, Hebei Province; Jining Sangyitang, Inner Mongolia; Hebi, Henan Province)of the North China Craton. Systematic comparisons with phlogopite-free spinel lherzolite xenolith from the same locality reveals that the phlogopite-bearing peridotitic xenoliths have relatively higher Al2O3, CaO, Na2O, K2O, TiO2 contents and lower MgO contents than those phogopite-free counterparts. The former also has higher LREE concentrations, but relatively less radiogenic Sr-Nd isotopic ratios. This demonstrates that mantle metasomatism can not only enrich the basaltic components and trace element concentrations, but also make a decrease in Mg# of the peridotites and olivines and a relative depletion in Sr-Nd isotopes. 87Rb/86Sr-87Sr/86Sr isochrons of the phlogopite-bearing xenoliths indicate that mantle metasomatism happened in the Mesozoic and/or Cenozoic time. The metasomatic agent was derived from the asthenosphere. The result also manifests that the widespread similarity of the geochemical features such as major and trace elements and isotopic compositions in the Cenozoic lithospheric mantle beneath the North China Craton to those “oceanic” lithospheric mantle could be as a result of the ubiquitous presence of the interaction between the old refractory peridotites and the infiltrated asthenospheric melt, rather than the actually newly-accreted lithospheric mantle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The petrology and geochemistry of peridotites entrained in Beiyan Cenozoic alkaline basalts within the middle segment of Tan-Lu fault zone and clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the North China Craton, have been systematically investigated. The main conclusions are obtained as follows. The peridotites entrained in alkaline basalts at Beiyan, Shandong Province, China are comprised of dominantly spinel lherzolites and spinel wehrlites with porphyroclastic, granuloblastic textures to resorption textures. The xenoliths are fertile in major element compositions (High CaO, TiO2, Low MgO, Cr2O3). The olivine Fo (= 100×Mg / (Mg+Fe) possesses a low and very large range of 81.0 to 91.0. The peridotites contain high percentages (Lherzolites: 10 - 19% in volume; Wehrlites: 24 - 28% in volume) of clinopyroxene with spongy textures. The Sr and Nd isotopic ratios of clinopyroxene separates from peridotites and pyroxenite xenoliths have a depleted and small range fall within the area of MORB, similar to newly-accreted lithospheric mantle. However, the appearance of many wehrlites and highly enriched LREE pattern suggest that this newly-accreted lithospheric mantle was considerably modified and reconstructed recently through the peridotite-asthenospheric melt interaction. The upwelling of asthenosphere from late Cretaceous to Eogene and upper mantle shearing of the Tan-Lu fault played an important role in the modification and reconstruction of the newly-accreted lithospheric mantle. The clinopyroxene megacrysts in the late Mesozoic and Cenozoic alkaline basaltic rocks from the eatern North China Craton are different in aspects of major elements, trace elements and isotopic composition. The characteristics of texture, mineral compositions and geochemistry as well as the Fe-Mg partitioning between the crystal and the melt indicates that the Al-augites in the Cenozoic basalts represent high-pressure crystallization products of alkaline basaltic melts. Thus, both of clinopyroxene megacrysts and host basalts could be derived from a same primitive magma. However, the Al-augites in the late Mesozoic basaltic rocks represent accidentally-included xenocrysts of basaltic components which had crystallized in the depth from a previously melting episode. The more depleted Sr-Nd isotopic compositions of Cenozoic megacrysts compared with those of host alkaline basalts and tholeiites demonstrate that even the alkali basalts could not completely represent primitive magma initiating in asthenosphere. That is to say, the Cenozoic alkaline basalts were more or less modified by some enriched Sr-Nd isotopic components during their eruption. Meanwhile, the tholeiites were not the products formed only by fractional crystallization of alkaline basaltic magma or different degrees of partial melting. It may result from the contribution of lithospheric mantle materials or crust contamination in magma chamber to alkali basaltic magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.