107 resultados para Melt
Resumo:
Novel GeS2-Ga2S3-AgCl chalcohalide glasses had been prepared by melt-quenching technique, and the glass-forming region was determined by XRD, which indicated that the maximum of dissolvable AgCl was up to 65 mol%. Thermal and optical properties of the glasses were studied by differential scanning calorimetry (DSC) and Visible-IR transmission, which showed that most of GeS2-Ga2S3-AgCl glasses had strong glass-forming ability and broad region of transmission (about 0.45-12.5 mu m). With the addition of AgCl, the glass transition temperature, Tg decreases distinctly, and the short-wavelength cut-off edge (lambda(vis)) of the glasses also shifts to the long wavelength gradually. However, the glass-forming ability of the glass has a complicated evolutional trend depended on the compositional change. In addition, the values of the Vickers microhardness, H (v) , which decrease with the addition of AgCl, are high enough for the practical applications. These excellent properties of GeS2-Ga2S3-AgCl glasses make them potentially applied in the optoelectronic field, such as all-optical switch, etc.
Stability against crystallization and spectroscopic properties of Tm3+ doped fluorophosphate glasses
Resumo:
Fluorophosphate glasses with various content of Al(PO3)(3) were prepared. With the increment of Al(PO3)(3) content, density decreases while refractive index increases, and transition temperature, crystallization peak temperature and melt temperature increase which were suggested by differential scanning calorimetry. These glasses exhibit the best stability against crystallization with 7-9 mol'Yo Al(PO3)(3) content. Normalized Raman spectra were used to analyze structure and phonon state. The increment of Al(PO3)(3) content does not affect phonon energy but results in the augment of phonon density. Absorption spectra were measured. H-3(6) -> F-3(4) transition exhibits absorption at L band of the third communication window. Compared with the energy of Tm3+ excited states in other glass system, F-3(4) energy of Tm3+ in these glasses is considerable higher and H-3(4) energy is considerable lower, and it can be predicted that emission band of H-3(4) -> F-3(4) transition is close to the amplified band of gain-shift Tm3+ doped fiber amplifier. Analyses of Judd-Ofelt theory suggest when Al(PO3)(3) content is no more than 7 mol%, Judd-Ofelt parameters Omega(t) and the lifetime of H-3(4) energy level of TM3+ vary little with the increment of Al(PO3)(3) content, and when Al(PO3)(3) content is more than 7 mol%, Omega(2) and Omega(6) increase and radiative lifetime of H-3(4) energy level of Tm3+ drops sharply with the increment of Al(PO3)(3) content. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The Er3+/Yb3+ co-doped glasses with compositions of xBi(2)O(3)-(65-x)P2O5-4Yb(2)O(3)-11Al(2)O(3)-5BaO-15Na(2)O (where x = 0, 2.5, 5, 7.5 and 10 mol%) were prepared using the normal melt quench technique. The optical absorption spectra of the glasses were recorded in the wavelength range 300-1700 nm. The effect of Bi2O3 content on the thermal stability and absorption spectra of glasses was investigated. In addition, the Judd-Ofelt parameters and oscillator strengths were calculated by employing Judd-Ofelt theory. It was observed that the positions of the fundamental absorption edge and cut-off wavelength shifted towards red as the content of Bi2O3 increased. However, there were no red shifts found both in the peak wavelength and in the center of mass wavelength of all absorption bands with Bi2O3 content increasing. The results of Judd-Ofelt theory analysis showed that Judd-Ofelt parameters Omega(t), (t = 2, 4, 6) changed sharply when Bi2O3 concentration exceeded 5 mol%. The variation trends of experimental oscillator strength were similar with those of Judd-Ofelt parameters as function of Bi2O3 concentrations. Moreover, differential scanning calorimetry experiments showed that the increases of Bi2O3 content weakened the network structure and then lowered the thermal stability of the glasses. The spontaneous emission probability A(rad), branching ratio beta and the radiative lifetime tau(rad) were also calculated and analyzed. The stimulated emission cross-section of Er3+ was calculated according to the McCumber theory. It was found that the stimulated emission cross-section of Er3+ was monotonically increases with Bi2O3 content increasing. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Phosphate glasses 60P
Resumo:
Glasses with compositions 50Bi
Resumo:
Three kinds of Er3+-doped tellurite glasses with different hydroxyl groups are prepared by the conventional melt-quenching method. Infrared spectra are measured to estimate the exact content of OH- groups in samples. The maximum phonon energy in glasses are obtained by measuring the Raman scattering spectra. The strength parameters Omega(t) (t = 2, 4, 6) for all the samples are calculated and compared. The nonradiative decay rate of the Er3+ I-4(13/2) -> I-4(15/2) transition are calculated for the glass samples with different phonon energy and OH- group contents. Finally, the effect of OH- groups on fluorescence decay rate of Er3+ is analysed, the constant KOH-Er Of TWN, TZPL and TZL glasses are calculated to be 9.2 x 10(-19) cm(4)s(-1), 5.9 x 10(-19) cm(4)s(-1), and 3.5 x 10(-19) cm(4)s(-1), respectively.
Resumo:
A series of zinc tellurite glasses of 75TeO(2)-20ZnO-(5-x)La2O3-xEr(2)O(3) (x=0.02, 0.05, and 0.1 mol%) with the different hydroxl groups were prepared by the conventional melt-quenching method. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. The observed increase of the fluorescence lifetime with the oxygen bubbling time has been related to the reduction in the OH- content concentration as evidenced by IR transmission spectra. Various nonradiative decay rates from I-4(13/2) of Er3+ with. the change of OH content were determined from the fluorescence lifetime and radiative decay rates were calculated on the basis of Judd-Ofelt theory. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er2O3-doped TeO2-ZnO-La2O3 modified tellurite glasses were prepared by the conventional melt-quenching method, and the Er3+ : I-4(13/2) -> I-4(15/2) fluorescence properties have been studied for different Er3+ concentrations. Infrared spectra were measured in order to estimate the exact content of OH- groups in samples. Based on the electric dipole-dipole interaction theory, the interaction parameter, C-Er,(Er), for the migration rate of Er3+ : I-4(13/2) -> I-4(13/2) in modified tellurite glass was calculated. Finally, the concentration quenching mechanism using a model based on energy transfer and quenching by hydroxyl (OH-) groups was presented. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new Er(3+)/Yb(3+) co-doped phosphate glass has been prepared, which exhibits good chemical durability and spectralproperties. Planar graded index waveguides have been fabricated in the glass by (Ag+)-Na(+) ion exchange in a mixed melt of silver nitrate and potassium nitrate. Ion exchange is carried out by varying the process parameters such as temperature, diffusion time, and molten salt compositions. The diffusion parameters, diffusion coefficients, and activation energy are determined by the guidelines of fabricated waveguides, which are determined by the input prism coupling technique.
Resumo:
Transparent and homogeneous aluminophosphate gels and glasses have been widely synthesized through an aqueous sol-gel route, extending significantly the glass-forming range compared to that accessible via the melt-cooling route. Different phosphorus precursors, sodium polyphosphate (NaPO3) and orthophosphate species (NaH2PO4 and/or H3PO4) were compared with regard to the macroscopic properties and the microscopic structure of the resultant gels and glasses as characterized by extensive high-resolution liquid- and solid-state NMR. Sodium polyphosphate solution results in a substantially wider composition range of homogenous gel formation than orthophosphate solutions, and the two routes produce significant structural differences in the sol and xerogel states. Nevertheless, the structures of the glasses obtained upon gel annealing above 400 degrees C are independent of the P-precursors used. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Yb:Y3Al5O12 (Yb:YAG) single crystals with Yb doping concentration 0.5 at.%, 5 at.%, 15 at.%, 25 at.%, 50 at.%, 100 at.% and Yb:YAlO3 (Yb:YAP) single crystals with Yb doping concentration 0.5 at.%, 5 at.%, 15 at.%, 30 at.% were grown by the Czochralski process. The fluorescence spectra of these crystals and the effects of self-absorption on the shape of the fluorescence spectra were studied. Through comparing the fluorescence spectra of Yb:YAG and Yb:YAP, all results indicate that the effects of self-absorption on the fluorescence spectra of Yb:YAP are remarkably stronger than that of Yb:YAG at the same Yb concentration. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
应用中频感应提拉法生长出掺杂浓度为10 at.-%的Yb:YAG与Yb:YAP晶体,对比了室温下两种晶体的吸收和发射光谱特性。结果表明,Yb:YAG晶体比Yb:YAP晶体有更好的激光性能和低的阈值;同时对比发现,Yb:YAP晶体的吸收截面是Yb:YAG晶体的2.16倍,它容易实现LD泵;由于Yb:YAP晶体的各向异性,它有轴向效应明显,它可以产生偏振激光。
Resumo:
采用提拉法生长了掺Ce、掺Yb和掺Mn的铝酸钇(YAlO3,YAP)晶体,晶体均完整透明,无肉眼可见的气泡、散射和包裹物等宏观缺陷。通过化学腐蚀和同步辐射白光形貌实验检测了YAP晶体中的生长小面缺陷。结果表明:晶体生长过程中,由于凸向熔体的固-液界面,造成了小面生长现象。沿[101]方向生长的YAP晶体中出现的小面为(102),(201),(121)和(121)奇异面。X射线摇摆曲线表征的结果表明:生长小面的存在严重破坏了晶体的微观结构完整性和均匀性,并导致了小角度晶界缺陷的产生。
Resumo:
Er3+ -doped Gd2SiO5 (Er:GSO) single crystal with dimensions of circle divide 35 x 40 mm(3) has been grown by the Czochralski method. The absorption and fluorescence spectra of the Er:GSO crystal were measured at room temperature. The spectral parameters were calculated based on Judd-Ofelt theory, and the intensity parameters Omega(2), Omega(4) and Omega 6 are obtained to be 6.168 x 10(-20), 1.878 x 10(-20), and 1.255 x 10(-20) cm(2), respectively. The emission cross-section has been calculated by Fuechtbauer-Ladenbury formula. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ytterbium-doped calcium pyroniobate single crystal has been grown for the first time. Spectral properties of Yb: Ca2Nb2O7 were investigated by emission and absorption spectra. Its cooperative luminescence and fluorescence lifetime were also studied. Yb ions in Ca2Nb2O7 showed very broad absorption and emission bandwidth and relatively large absorption and emission cross-sections. Along with other optical properties, this Yb-doped crystal would be a potential self-frequency doubling femtosecond laser gain material. (C) 2007 Published by Elsevier B.V.