248 resultados para MATTER FIELDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic study of the structural and intrinsic magnetic properties of the hydrides R3Fe29-xCrxHy (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Hydrogenation lends to a relative volume expansion of the unit cell and a decrease in x-ray density for each compound. Anisotropic expansions mainly along the n- and b-axes rather than along the c-axis for all of the compounds upon hydrogenation are observed. The lattice constants and the unit-cell volume of R3Fe29-xCrx and R3Fe29-xCrxHy decrease with increasing R atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in an increase in the Curie temperature and a corresponding increase in the saturation magnetization at room temperature for each compound. After hydrogenation a decrease of 0.34 mu(B)/Fe in the average Fe atomic magnetic moment and a slight increase in the anisotropy field for Y3Fe27.2Cr1.8 are achieved at 4.2 K. First-order magnetization processes (FOMP) occur in magnetic fields of around 1.5 T and 4.0 T at 4.2 K for Nd3Fe24.5Cr4.5H5.0 and TD3Fe27.0Cr2.0H2.8, and around 1.4 T at room temperature for Gd3Fe28.0Cr1.0H4.2. The abnormal crystallographic and magnetic properties of Ce3Fe25.0Cr4.0 and Ce3Fe25.0Cr4.0H5.4 suggest that the Ce ion non-triply ionized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic investigation of crystallographic and magnetic properties of nitride R3Fe29-xVxN4 (R = Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed. Nitrogenation leads to a relative volume expansion of about 6%. The lattice constants and unit cell volume decrease with increasing rare-earth atomic number from Nd to Dy, reflecting the lanthanide contraction. On average, the Curie temperature increases due to the nitrogenation to about 200 K compared with its parent compound. Generally speaking, nitrogenation also results in a remarkable improvement of the saturation magnetization and anisotropy fields at 4.2 K and room temperature for R3Fe29-xVxN4 compared with their parent compounds. The transition temperature indicates the spin reorientations of R3Fe29-xVxN4 for R = Nd and Sm are at around 375 and 370 K which are higher than that of R3Fe29-xVx, for R = Nd and Sm 145 and 140 K, respectively. The magnetohistory effects of R3Fe29-xVxN4 (R = Ce, Nd, and Sm) are observed in low fields of 0.04 T. After nitrogenation the easy magnetization direction of Sm3Fe26.7V2.3 is changed from an easy-cone structure to the b-axis. As a preliminary result, a maximum remanence B-r of 0.94 T, an intrinsic coercivity mu(0)H(C) of 0.75 T, and a maximum energy product (B H)(max) of 108.5 kJ m(-3) for the nitride magnet Sm3Fe26.7V2.3N4 are achieved by ball-milling at 293 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tunneling magnetoresistance (TMR) in Ga(0.9)2Mn(0.08)As/Al-O/Co40Fe40B20 trilayer hybrid structure as a function of temperature from 10 to 50 K with magnetic field vertical bar H vertical bar <= 2000 Oe has been studied. TMR ratio of 1.6% at low fields at 10 K was achieved with the applied current of 1 mu A. The behavior of junction resistance was well explained by the tunneling resistance across the barrier. Strong bias dependences of magnetoresistance and junction resistance were presented. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3068418]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the single-electron and two-electron vertically-assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six criergy levels of single-electron quantum disks and the two lowest energy levels of two-electron quantum disks in an axial magnetic field. The change of the magnetic field as an effective potential strongly modifies the electronic structures. leading to splittings and crossings between levels The results demonstrate the switching between the around states with the total spins S = 0 and S = 1. The switching results in a qubit allowed to fabricate by current growth techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following the idea of Xing et al., we investigate a general method for constructing families of pseudorandom sequences with low correlation and large linear complexity from elliptic curves over finite fields in this correspondence. With the help of the tool of exponential sums on elliptic curves, we study their periods, linear complexities, linear complexity profiles, distributions of r-patterns, periodic correlation, partial period distributions, and aperiodic correlation in detail. The results show that they have nice randomness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the phase-conjugate polarization interference between two one-photon processes. When the laser has broadband linewidth, the sum-frequency polarization beat (SFPB) signal shows the autocorrelation of SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum-frequency of energy-levels. It hits been also found that the asymmetric behaviors of the polarization beat signals result from the unbalanced dispersion effects, (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the controllable negative and positive group delay in transmission through a single quantum well at the finite longitudinal magnetic fields. It is shown that the magneto-coupling effect between the longitudinal motion component and the transverse Landau orbits plays an important role in the group delay. The group delay depends not only on the width of potential well and the incident energy, but also on the magnetic-field strengthen and the Landau quantum number. The results show that the group delay can be changed from positive to negative by the modulation of the magnetic field. These interesting phenomena may lead to the tunable quantum mechanical delay line. (c) 2007 Elsevier B.V. All rights reserved.