100 resultados para Laplace Equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bagnold-type bed-load equations are widely used for the determination of sediment transport rate in marine environments. The accuracy of these equations depends upon the definition of the coefficient k(1) in the equations, which is a function of particle size. Hardisty (1983) has attempted to establish the relationship between k(1) and particle size, but there is an error in his analytical result. Our reanalysis of the original flume data results in new formulae for the coefficient. Furthermore, we found that the k(1) values should be derived using u(1) and u(1cr) data; the use of the vertical mean velocity in flumes to replace u(1) will lead to considerably higher k(1) values and overestimation of sediment transport rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the variation principle, the nonlinear evolution model for the shallow water waves is established. The research shows the Duffing equation can be introduced to the evolution model of water wave with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For some species, hereditary factors have great effects on their population evolution, which can be described by the well-known Volterra model. A model developed is investigated in this article, considering the seasonal variation of the environment, where the diffusive effect of the population is also considered. The main approaches employed here are the upper-lower solution method and the monotone iteration technique. The results show that whether the species dies out or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the hereditary effects. The evolution of the population may show asymptotic periodicity, provided a certain condition is satisfied for the above factors. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main aim of this paper is to investigate the effects of the impulse and time delay on a type of parabolic equations. In view of the characteristics of the equation, a particular iteration scheme is adopted. The results show that Under certain conditions on the coefficients of the equation and the impulse, the solution oscillates in a particular manner-called "asymptotic weighted-periodicity".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instead of discussing the existence of a one-dimensional traveling wave front solution which connects two constant steady states, the present work deals with the case connecting a constant and a nonhomogeneous steady state on an infinite band region. The corresponding model is the well-known Fisher equation with variational coefficient and Dirichlet boundary condition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers interfacial waves propagating along the interface between a two-dimensional two-fluid with a flat bottom and a rigid upper boundary. There is a light fluid layer overlying a heavier one in the system, and a small density difference exists between the two layers. It just focuses on the weakly non-linear small amplitude waves by introducing two small independent parameters: the nonlinearity ratio epsilon, represented by the ratio of amplitude to depth, and the dispersion ratio mu, represented by the square of the ratio of depth to wave length, which quantify the relative importance of nonlinearity and dispersion. It derives an extended KdV equation of the interfacial waves using the method adopted by Dullin et al in the study of the surface waves when considering the order up to O(mu(2)). As expected, the equation derived from the present work includes, as special cases, those obtained by Dullin et al for surface waves when the surface tension is neglected. The equation derived using an alternative method here is the same as the equation presented by Choi and Camassa. Also it solves the equation by borrowing the method presented by Marchant used for surface waves, and obtains its asymptotic solitary wave solutions when the weakly nonlinear and weakly dispersive terms are balanced in the extended KdV equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As we know, the essence of exploration is objective body determined by getting the information. Such as seismic、electrical and electromagnetic prospecting, they are the common methods of the exploration. Therefore, They have a complete set of theory now. In fact, the effective information can also be got by the diffusion way, it is called diffusion prospecting. The diffusion way prospecting is necessary and important. The way of diffusion prospecting is studied in the paper and main works include below: (1) On the basis of studying basic law of the diffusion, the paper gives the idea of diffusion wave and the formulas of computing diffusion wave function. (2) The paper studies the way of the diffusion prospecting and the methods of data processing. At the same time, it also expounds the characteristics and the applied foreground of the diffusion prospecting. (3) The paper gives the tomography idea and the basic method of diffusion CT. Meanwhile, it also expounds the foreground that the diffusion CT is applied in oil development prospecting. (4) As the inversion of the diffusion equation is a part of the diffusion prospecting way, the methods of diffusion equation inversion are studied and the two formulas are deduced --Laplace transform and polynomial fitting inversion formulas. As the other important result of diffusion equation inversion, the inversion can offer a new analysis method for well Testing in oil development. In order to show a set of methods in the paper feasible, forward、inversion and CT numerical simulation are done in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic wave field numerical modeling and seismic migration imaging based on wave equation have become useful and absolutely necessarily tools for imaging of complex geological objects. An important task for numerical modeling is to deal with the matrix exponential approximation in wave field extrapolation. For small value size matrix exponential, we can approximate the square root operator in exponential using different splitting algorithms. Splitting algorithms are usually used on the order or the dimension of one-way wave equation to reduce the complexity of the question. In this paper, we achieve approximate equation of 2-D Helmholtz operator inversion using multi-way splitting operation. Analysis on Gauss integral and coefficient of optimized partial fraction show that dispersion may accumulate by splitting algorithms for steep dipping imaging. High-order symplectic Pade approximation may deal with this problem, However, approximation of square root operator in exponential using splitting algorithm cannot solve dispersion problem during one-way wave field migration imaging. We try to implement exact approximation through eigenfunction expansion in matrix. Fast Fourier Transformation (FFT) method is selected because of its lowest computation. An 8-order Laplace matrix splitting is performed to achieve a assemblage of small matrixes using FFT method. Along with the introduction of Lie group and symplectic method into seismic wave-field extrapolation, accurate approximation of matrix exponential based on Lie group and symplectic method becomes the hot research field. To solve matrix exponential approximation problem, the Second-kind Coordinates (SKC) method and Generalized Polar Decompositions (GPD) method of Lie group are of choice. SKC method utilizes generalized Strang-splitting algorithm. While GPD method utilizes polar-type splitting and symmetric polar-type splitting algorithm. Comparing to Pade approximation, these two methods are less in computation, but they can both assure the Lie group structure. We think SKC and GPD methods are prospective and attractive in research and practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An empirical equation is proposed to accurately correlate isothermal data over a wide range of temperature With the equation ln k = A* + B*/T-lambda the retention times of different solutes tested on OV-101, SE-54 and PEG 20M capillary columns have been achieved even when lambda is assigned a constant value of 1.7 Comparison with ln k = A + B/T and in k = c + d/T+ h/T-2, shows that the proposed equation is of higher accuracy and is applicable to extrapolation calculation, especially from data at high temperature to those at low temperature. Parameters A* and B* as well as A and B are also discussed. The linear correlation of A* and B* is weaker than that of A and B.