102 resultados para Jackie Gill
Resumo:
C-type lectins are a superfamily of carbohydrate-recognition proteins which play crucial roles as pattern recognition receptors (PRRs) in the innate immunity. In this study, the full-length cDNA of a C-type lectin was cloned from scallop Chlamys farreri (designated as Cflec-5) by expression sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach The full-length cDNA of Cflec-5 was of 1412 bp. The open reading frame encoded a polypeptide of 153 amino acids, including a signal sequence and a conserved carbohydrate-recognition domain with the EPN motif determining the mannose-binding specificity The deduced amino acid sequence of Cflec-5 showed high similarity to members of C-type lectin superfamily. The quantitative real-time PCR was performed to investigate the tissue distribution of Cflec-5 mRNA and its temporal expression profiles in hemocytes post pathogen-associated molecular patterns (PAMPs) stimulation. In healthy scallops, the Cflec-5 mRNA was mainly detected in gill and mantle, and marginally in other tissues The mRNA expression of Cflec-5 could be significantly induced by lipopolysaccharide (LPS) and glucan stimulation and reached the maximum level at 6 h and 12 h, respectively But its expression level did not change significantly during peptidoglycan (PGN) stimulation The function of Cflec-5 was investigated by recombination and expression of the cDNA fragment encoding its mature peptide in Escherichia coli Rosetta Gami (DE3) The recombinant Cflec-5 agglutinated Pichia pastoris in a calcium-independent way The agglutinating activity could be inhibited by D-mannose. LPS and glucan, but not by D-galactose or PGN. These results collectively suggested that Cflec-5 was involved in the innate Immune response of scallops and might contribute to nonself-recognition through its interaction with various PAMPs (C) 2010 Elsevier Ltd All rights reserved
Resumo:
A new member of antimicrobial protein genes of the Crustin family was cloned from haemocytes of the Chinese shrimp Fenneropenaeus chinensis by 3' and 5' RACE. The full-length cDNA of Crustin-like gene contains a 390 bp open reading frame, encoding 130 amino acids. The deduced peptide contains a putative signal peptide of 17 amino acids and mature peptide of 113 amino acids. The molecular mass of the deduced mature peptide is 12.3 ku. It is highly cationic with a theoretical isoelectric point of 8.5. The deduced amino acids sequence of this Crustin showed high homology with those of Penaeus (Litopenaeas) setferus. Northern blotting showed that the cloned Crustin gene was mainly expressed in haemocytes, gill, intestine, and RNA in situ hybridization indicated that the Crustin gene was constitutively expressed exclusively in haemocytes of these tissues. Capillary electrophoresis RT-PCR analysis showed that Crustin was up-regulated dramatically from 12 to 48 h after a brief decrease of mRNA during first 6 h in response to microbe infection. The level of Crustin mRNA began to restore at 72 h post-challenge. This indicated that Crustin gene might play an important role when shrimps are infected by bacterial pathogen.
Resumo:
A full length amphioxus cDNA, encoding a novel phosducin-like protein (Amphi-PhLP), was identified for the first time from the gut cDNA library of Branchiostoma belcheri. It is comprised of 1 550 bp and an open reading frame (ORF) of 241 amino acids, with a predicted molecular mass of approximately 28 kDa. In situ hybridization histochemistry revealed a tissue-specific expression pattern of Amphi-PhLP with the high levels in the ovary, and at a lower level in the hind gut and testis, hepatic caecum, gill, endostyle, and epipharyngeal groove, while it was absent in the muscle, neural tube and notochord. In the Chinese Hamster Ovary (CHO) cells transfected with the expression plasmid pEGFP-N1/Amphi-PhLP, the fusion protein was targeted in the cytoplasm of CHO cells, suggesting that Amphi-PhLP is a cytosolic protein. This work may provide a framework for further understanding of the physiological function of Amphi-PhLP in B. belcheri.
Resumo:
对虾病害在世界范围内的广泛传播,给水产养殖和沿海农村经济造成了重大损失。深入开展对虾免疫机制研究并在此基础上寻找对虾疾病防治的有效方法已成为当务之急。研究表明,当对虾等甲壳动物受到外界病原刺激时,其体内的吞噬细胞在吞噬活动中会激活磷酸己糖支路的代谢,引起呼吸爆发,产生多种活性氧分子。另外,受到病原侵染的对虾还会产生其他多种免疫反应,这些免疫反应将消耗大量的能量(ATP),产能的呼吸链会加速运转,由此也会引发大量活性氧的产生。这些活性氧分子可以杀灭入侵的病原微生物,但同时由于活性氧分子反应的非特异性,它们也会对宿主的细胞、组织和器官造成严重伤害,进而导致对虾生理机能的损伤和免疫系统的破坏。所以,消除对虾体内因过度免疫反应产生的过量氧自由基将能够增强其抵御病原侵染的能力,提高免疫力。本论文从中国明对虾体内克隆了线粒体型超氧化物歧化酶(mMnSOD)、胞质型超氧化物歧化酶(cMnSOD)、过氧化氢酶(Catalase)和过氧化物还原酶(Peroxiredoxin)等四种与免疫系统相关的抗氧化酶基因,分析了它们的分子结构特征,组织分布及应答不同病原刺激的表达变化模式,并对其中的mMnSOD基因和Peroxiredoxin基因进行了体外重组表达、分离纯化和酶活性分析。 采用RACE技术从中国明对虾血细胞中克隆了两个超氧化物歧化酶(SOD)基因,通过序列比对分析发现,其中一个为mMnSOD基因,另一个为cMnSOD基因。mMnSOD基因的cDNA全长为1185个碱基,其中开放阅读框为660个碱基,编码220个氨基酸,其中推测的信号肽为20个氨基酸。多序列比对结果显示中国明对虾mMnSOD基因的推导氨基酸序列与罗氏沼虾、蓝蟹的推导氨基酸序列同源性分别为88%和82%。Northern blot结果表明,该基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。半定量RT-PCR结果显示,对虾感染病毒3 h时,该基因在血细胞和肝胰脏中的转录水平显著升高。此外,通过构建原核表达载体,本研究对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活分析。cMnSOD基因的cDNA全长为1284个碱基,其中开放阅读框为861个碱基,编码287个氨基酸。多序列比对结果显示中国明对虾cMnSOD基因的推导氨基酸序列与斑节对虾和凡纳滨对虾的同源性高达98%和94%。组织半定量结果显示,cMnSOD基因在对虾被检测的各个组织中均有表达。 另外,半定量RT-PCR结果表明,对虾感染病毒23h时,该基因在肝胰脏中的转录上升到正常水平的3.5倍;而感染后59 h时,该基因在血细胞中的转录上升到正常水平的2.5倍。 利用根据其他生物过氧化氢酶保守氨基酸序列设计的简并引物,结合RACE技术,从中国明对虾肝胰脏中克隆到了过氧化氢酶基因的部分片段,片段长1725个碱基。多序列比对结果发现目前所得中国明对虾Catalase基因部分片段的推导氨基酸序列与罗氏沼虾和皱纹盘鲍Catalase氨基酸序列的同源性分别达到95%和73%。通过实时荧光定量PCR技术对中国明对虾Catalase基因在各个组织中的分布情况及病毒感染后该基因在血细胞和肝胰脏中的转录变化进行了研究。结果发现,该基因在肝胰脏、鳃、肠和血细胞中表达水平较高,在卵巢、淋巴器官和肌肉中的表达水平相对较弱;感染病毒23 h和37 h时,对虾血细胞和肝胰脏中该基因mRNA的表达量分别出现显著性上升。 依据中国明对虾头胸部cDNA文库提供的部分片段信息,结合SMART-RACE技术,从中国明对虾肝胰脏中克隆到了过氧化物还原酶基因(Peroxiredoxin), 该基因的cDNA全长为942个碱基,其中开放阅读框为594个碱基,编码198个氨基酸。中国明对虾Peroxiredoxin基因的推断氨基酸序列与伊蚊、文昌鱼和果蝇等Peroxiredoxin基因的推断氨基酸序列同源性分别为77%、76%和73%。其蛋白理论分子量为22041.17 Da,pI为5.17。Northern blot结果表明,Peroxiredoxin基因在对虾的肝胰脏、血细胞、淋巴器官、肠、卵巢、肌肉和鳃等组织中均有表达。实时荧光定量PCR结果显示,弧菌感染后,该基因在对虾血细胞和肝胰脏中的转录水平都有明显变化并且表达模式不同。另外,对该基因进行了体外重组表达,并对纯化的重组蛋白进行了质谱鉴定和酶活性分析。酶活性分析表明,复性后的重组蛋白能在DTT存在的条件下还原H2O2。
Resumo:
HSP22 is a member of a small HSP subfamily contributing to the growth, transformation and apoptosis of the cell as well as acting as a molecular chaperone. In the present study, CfHSP22 cDNA was cloned from Chlamys farreri by the rapid amplification of cDNA ends technique. The full-length cDNA of CfHSP22 was of 1279 bp, consisting of a 5'-terminal untranslated region (5'UTR) of 122 bp, a 3'UTR of 581 bp with a canonical polyadenylation signal sequence AATAAA and a poly( A) tail, and an open reading frame of 576 bp encoding a polypeptide with a molecular mass of 22.21 kDa and a predicted isoelectric point of 9.69. There was an alpha-crystallin domain, a hallmark of the sHSP subfamily, in the C-terminus, and the deduced amino acid sequence of CfHSP22 showed high similarity to previously identified HSP22s. CfHSP22 was constitutively expressed in the haemocyte, muscle, kidney, gonad, gill, heart and hepatopancreas, and the expression level in the hepatopancreas was higher than that in the other tissues. CfHSP22 transcription was up-regulated and reached a maximal level at 12 h after the bacterial challenge, and then declined progressively to the original level at 48 h. These results suggested that CfHSP22 perhaps play a critical role in response to the bacterial challenge in haemocytes of scallop C. farreri.
Resumo:
Mass mortalities of cultured zhikong scallops (Chlamys farreri) have occurred each summer in most culture areas of northern China since 1996. Among the hypothesized causes are high culture density, infectious disease and genetic inbreeding. To investigate these potential agents, C. farreri were deployed at three densities (low, medium and high) at three sites (Jiaonan, Penglai and Yantai) in the summer of 2000. Scallops were sampled for survival, growth and histopathology before, during and after a mortality episode. Most of the mortality occurred in July and August, during and toward the later part of the spawning season, when water temperature reached 23-26 degrees C. Final cumulative mortalities reached 85% to 90% at all three sites. Scallops in the medium and high densities had higher initial death rates than did those at the low density. High densities also inhibited growth. Ciliates from the genus Trichodina, larvae of various organisms and anomalous secretions were observed in sections of the gill cavity, with highest prevalence during and at the end of the mortality period. Prokaryotic inclusion bodies were found in the soft tissues, but their prevalence was low and apparently without correlation with mortalities. Genetic analysis with random amplified polymorphic DNA markers showed slightly lower heterozygosity in the cultured stocks (0.301) than in the wild stocks (0.331). It is possible that the mortalities are caused by a combination of several factors such as stress associated with reproduction, high temperature, overcrowding and poor circulation in the growout cages, opportunistic invaders or pathogens, and possibly inbreeding. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Growth hormone (GH) effectively promotes seawater (SW) adaptation in salmonids, but little is known of its effect in tilapias. Experiments were performed to investigate the effects of recombinant eel GH (reGH) on osmoregulatory actions and ultrastructural features of gill chloride cells in juvenile tilapia, Oreochromis niloticus. Tilapia showed a markedly improved SW survival, when directly transferred from freshwater (FW) to 62.5% SW 24h after a single reGH injection (0.25 or 2.5 mu g g(-1)) or 3 reGH injections (0.25 mu g g(-1) every other day). Plasma Na+ and Mg2+ levels were significantly reduced by reGH (0.25 and 2.5 mu g g(-1)) compared with saline injections; Ca2+ concentrations were reduced significantly by high dose of reGH (2.5 mu g g(-1)) after SW transfer. However, fish failed to survive more than 24h when directly transferred to 70 % SW, although the fish treated with reGH could survive longer than the controls. When examined by electron microscopy, the chloride cells were identified as mitochondrion-rich and an extensive tubular system was induced by GH treatment. The results of the present study suggest that, similar to its effect on salmonids, GH also exerts acute osmoregulatory actions and enhances SW adaptation in juvenile tilapia. GH also stimulates the differentiation of chloride cells toward SW adaptation.
Resumo:
The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Six species belonging to two families of Hemichordata have previously been recorded in Chinese waters. This paper records the discovery and description of a new species of the genus Glandiceps found in Jiaozhou Bay, Qingdao, Shandong Province, named Glandiceps qingdaoensis. The new species has a long proboscis with dorsal and ventral grooves, a stomochord with a long vermiform process, a proboscis cavity with a dorsal median, right and left glomeruli, right and left glomeruli very large and encircling the stomochord, a proboscis skeleton in the cavity extends into the median posterior of the collar, a well-developed dorsal ventral muscular septum in the proboscis cavity dividing the cavity completely into two separate parts. The collar cord is without giant nerve roots. The trunk with four distinct regions that can be recognized externally: branchial-genital region, genital region, hepatic region, and intestinal region. The dorsal pharynx is large and the gill pores are small. The tongue bars are encircled by vesicles, and the first gonad commences at the level of the second or third gill slit.
Resumo:
The locations and effects of quantitative trait loci (QTL) were estimated for nine characters for growth-related traits in the Pacific abalone (Haliotis discus hannai Ino) using a randomly amplified polymorphic DNA (RAPD), amplification fragment length polymorphism (AFLP) and SSR genetic linkage map. Twenty-eight putatively significant QTLs (LOD > 2.4) were detected for nine traits (shell length, shell width, total weight, shell weight, weight of soft part, muscle weight, gonad and digestive gland weight, mantle weight and gill weight). The percentage of phenotypic variation explained by a single QTL ranged from 8.0% to 35.9%. The significant correlations (P < 0.001) were found among all the growth-related traits, and Pearson's correlation coefficients were more than 0.81. For the female map, the QTL for growth were concentrated on groups 1 and 4 linkage maps. On the male map, the QTL that influenced growth-related traits gathered on the groups 1 and 9 linkage maps. Genetic linkage map construction and QTL analysis for growth-related traits are the basis for the marker-assisted selection and will eventually improve production and quality of the Pacific abalone.
Resumo:
Superoxide dismutases are an ubiquitous family of enzymes that function to efficiently catalyze the dismutation of superoxide anions. Two unique and highly compartmentalized bay scallop Argopecten irradians superoxide dismutases: MnSOD and ecCuZnSOD, have been molecularly characterized in our previous study. To complete characterize the SOD family in A. irradians, a novel intracellular copper/zinc SOD from the A. irradians (Ai-icCuZnSOD) was obtained and characterized. The full-length cDNA of Ai-icCuZnSOD was 1047 bp with a 459 bp open reading frame encoding 152 amino acids. The genomic length of the Ai-icCuZnSOD gene was about 4279 bp containing 4 exons and 3 introns. The promoter region containing many putative transcription factor binding sites were analyzed. Furthermore, quantitative reverse transcriptase real-time PCR (qRT-PCR) analysis indicated that the highest expression of the Ai-icCuZnSOD was detected in gill and the expression profiles in hemocytes of bay scallops challenged with bacteria Vibrio anguillarum and lipopolysaccharide (LPS) were different. The result presented an increased expression after injection with LPS whereas no significant changes were observed after V. anguillarum injection. A fusion protein containing Ai-icCuZnSOD was produced in vitro. The rAi-icCuZnSOD is a stable enzyme, retaining more than 80% of its activity between 10 and 60 degrees C and keeping above 88% of its activity at pH values between 5.8 and 9. Ai-icCuZnSOD is more stable under alkaline than acidic conditions. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
A novel manganese superoxide dismutase (MnSOD) was cloned from bay scallop Argopecten irradians by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA of MnSOD was of 1207 bp with a 678 bp open reading frame encoding 226 amino acids. The deduced amino acid sequence contained a putative signal peptide of 26 amino acids. Sequence comparison showed that the MnSOD of A. irradians shared high identity with MnSOD in invertebrates and vertebrates, such as MnSOD from abalone Haliotis discus discus (ABG88843) and frog Xenopus laevis (AAQ63483). Furthermore, the 3D structure of bay scallop MnSOD was predicted by SWISS-MODEL Protein Modelling Server and compared with those of other MnSODs. The overall structure of bay scallop MnSOD was similar to those of zebrafish Danio rerio, fruit fly Drosophila melanogaster, Chinese shrimp Fenneropenaeus chinensis, human Homo sapiens, and had the highest similarity to scallop Mizuhopecten yessoensis and abalone H. discus discus. A quantitative real-time PCR (qRT-PCR) assay was developed to detect the mRNA expression of MnSOD in different tissues and the temporal expression in haemocytes following challenge with the bacterium Vibrio anguillarum. A higher-level of mRNA expression of MnSOD was detected in gill and mantle. The expression of MnSOD reached the highest level at 3 h post-injection with V. anguillarum and then slightly recovered from 6 to 48 h. The results indicated that bay scallop MnSOD was a constitutive and inducible protein and thus could play an important role in the immune responses against V anguillarum infection. (c) 2008 Elsevier Ltd. All rights reserved.