92 resultados para Italianos - Portugal - séc.19
Resumo:
地幔柱概念在19世纪60至70年代就被提出,但是由于板块构造理论在解释地球上岩浆活动的分布规律时取得了空前的成功,在当时这一理论是被排斥的。板块边界概念可以解释地球上绝大部分的岩浆产出,但在解释板内岩浆的成因时往往显得力不从心,尽管这些岩浆的体积只占地球岩浆总量的2%。地幔柱理论模型发展到现在得到不同学科的支持。地质学、地球化学、地球物理学、古生物学、比较行星学、实验岩石学等等都提供了直接或间接的证据,证明地幔柱几乎存在整个地:质历史时期。当前地幔柱理论中在地球化学领域有两大研究热点:高钦低钦玄武岩的起源以及地幔柱中是否存在循环俯冲洋壳物质。完全解决这些问题才可能深入系统地建立地慢柱成矿作用模型。现在已经建立了一些矿床类型与地慢柱作用的联系:如现在认为赋存在金伯利岩中的金刚石矿床的形成与地慢柱作用密不可分,一些岩浆硫化物矿床和岩浆氧化物矿床很显然是地慢柱岩浆作用形成的,如西伯利亚火成岩省的Noril'sk-Talnakh铜镍铂族元素矿床以及KeweenawaJI大陆裂谷体系的Dultlth杂岩体的Cu-Ni矿床。另外还有赋存在大型基性一超基性层状岩体中的PGE、Ni和cu矿床,如Great Dyke和布什维尔德杂岩体。一些超大型热液矿床也与地慢柱有可能的联系(Pirajno,2000):如270oMa形成的超大型Kidd Creek火山成因块状硫化物矿床(Bleeker et al.,1 999;Wynan et al.,1999)和南澳大利亚1600Ma形成的超大型olymPicD翻矿床。本文的研究工作包含两方面内容:通过热力学计算峨眉山玄武岩在深部的结晶分异,对峨眉山大火成岩省的岩浆量分布和岩浆氧化物矿床(华Ti磁铁矿矿床)的分布以及下地壳高波速层的物相进行理论解释;对峨眉山大火成岩省金宝山PGE典型矿床进行成岩成矿的地球化学研究,预测整个大火成岩省的岩浆硫化物矿床产出位置。大多数峨眉山玄武岩的 MgO<7%,Ni为4-232ppm,它们是原始岩浆结晶分异后的产物。峨眉山玄武岩省下地壳和上地幔之间存在厚度为:8-25km1,P彼速为7.1-7.8km/s的附加层(高地震波速层)。滇西地区出露的洲套第三纪富碱斑岩,地球化学和同位素研究表明斑岩的岩浆源是来自“壳一慢混合层”,源区的形成时代为220-25Ma,与峨眉山玄武岩的形成时代一致。所以有理由认为该附加层是由峨眉山玄武岩在此结晶分异形成的。与地慢柱有关的洋岛Hawaii、Marquesas Islands;海底高原Oniong Java、大陆火山岩省ColumbiaRiver Plateaus地震彼研究都表明在上地慢顶部有一高速附加层,Farnetani etal.(1996)的研歼表明高速附加层是由来自地幔柱的岩浆在此结晶分异形成的。玄武岩是一种混合的部分熔融产物,是不同成分的地幔橄榄岩在不同的压力下熔出的。这种降压熔融高温高压实验是做不到的。熔出的熔体成分是温度、压力及橄榄岩成分(源区)的函数,形成的岩浆是一个多压熔融的集合体。热力学计算能够较为精确地计算出生成的岩浆成分和约束岩浆产生的过程。岩浆的结晶分异也是同样的情形,尤其是分离结晶过程,实验岩石学是很精确难模拟其过程的。热力学计算使用的MELTS程序,MELTS适用范围很广,适用于模拟岩石熔融生成岩浆和岩浆的冷却结晶。现今峨眉山大火成岩省的地壳厚度为40恤,这被认为是后期褶皱加厚的缘故。根据峨眉山玄武岩中辉石斑晶成分和玄武岩本身成分计算出分异结晶的压力为6kb,那么当时的地壳厚度约为20km:选择氧逸度为QFM,这一氧逸度范围认为是大多数大陆溢流玄武岩结晶分异时的氧化还原环境。热力学计算结果通过峨眉山玄武岩成分进行约束和验证。Al2O3、NaZO+K 20、CaO与MgO计算的演化趋势线与实际观察的演化符合较好,橄榄石和斜方辉石的结晶使得CaO随着MgO的降低而增高;当单斜辉石成为液相线矿物时,cao也随着Mgo的降低而降低了。单斜辉石在岩浆演化到MgO=10.3%时成为液相线矿物。整个计算过程中斜长石未成为液相线矿物,这与大多数玄武岩不具有Eu异常是一致的,并月_Al2O3随着MgO的减小单调增加也说明了这点。不过大多数峨眉山玄武岩常含有斜长石斑晶,这是低压下结晶分异的结果。由于斜长石密度小,所有很难与高铁玄武岩分离。整个计算的难点也是创新点是波速计算。通过分离的堆晶矿物组合中各种矿物的成分和质量分数计算的附加层波速比观察值高,不过堆积岩体常常会有残留岩浆存在矿物晶粒间,这样会降低岩石的压缩波速。大型基性一超基性岩体常常会残留有或者捕获5-30%的岩浆。假定两个高波速附加层分别捕获7叭,和巧%的残留岩浆,计算的结果就大体等于观察值。热力学和质量平衡计算研究表明:高地震波速层为橄榄辉石岩一辉石岩的巨型侵入岩体;峨眉山中岩区的岩浆量最大也符合含V-Ti磁铁矿矿床只产在中岩区,如太和、白马、攀枝花、红格等岩体;西岩区的岩浆量最小表明几乎没有可能在西岩区形成有规模的V-Ti磁铁矿矿床,实际观察仅仅只见到数量少而小的岩体;东岩区下地壳厚达20灿1的高波速层暗示东岩区上地壳的侵入岩体积也应该具有相当规模,应该是V-Ti磁铁矿矿床成矿区。目前在东岩区很少发现与峨眉山玄武岩有关的岩浆矿床的主要原因是:东岩区的剥蚀深度不够,没有可观的侵入岩体出露,而中岩区侵入岩都侵入在元古代地层中。按照质量平衡的计算方法,最保守的估算整个峨眉地慢柱岩浆事件产生的岩浆量为8.9*106km3,上地壳峨眉山玄武岩和侵入岩体积为3.9*106km3。如果按照初始覆盖面积5x106km2计算(与西伯利亚暗色岩初始覆盖面积相当),喷发高峰期为2Ma,计算的喷发速率为3.9km3/year。这并不亚于西伯利亚暗色岩的喷发速率4km3/year。这对于研究峨眉山大火成岩浆事件与二叠·三叠交界或end-QuadaluPian生物灭绝之间的可能联系具有重要意义。本文另一方面的研究工作是:首先系统地介绍了岩浆硫化物矿床的基本原理,然后通过金宝山PGE矿床实例研究,提出金宝山岩体成岩模式,并且对整个峨眉山大火成岩省的岩浆硫化物矿床产出位置进行理论预测。详细地球化学研究表明金宝山镁铁一超镁铁岩是峨眉山大火成岩省古老火山岩浆房的残留物。岩体主要由底部超镁铁岩和上部镁铁岩组成,两种岩石的质量大致相同。根据超镁铁岩的矿物组合计算的成岩时的氧逸度较高,热力学方法计算的成岩压力为2kb左右。超镁铁岩的包嵌结构和铁铁岩的微晶一细晶结构说明超镁铁岩为镁铁岩结晶的矿物堆积形成的。镁铁一超镁铁岩的蚀变程度不同以及Sc、Sr、Eu等元素在两类岩石中的不同特征指示了整个成岩过程。金宝山岩体的原始岩浆 MgO=8%说明高镁玄武岩并不是形成PGE矿床的必要条件。金宝山的成岩模式是:在火山喷发前,岩浆侵位时橄榄石和少量铬尖晶石先结晶,沉淀在岩浆房底部;随后结晶的是斜方辉石和斜长石,斜方辉石也沉淀在岩浆房底部,斜长石由于密度较小集中中岩浆房上部,岩浆房的中部是:少量的斜长石小斑晶。由于斜方辉石和斜长石的结晶,这样岩浆中的Sc、Sr和Eu就会亏损,也是岩浆房底部堆积岩的原始捕获岩浆。火山喷发后,由于压力的突然降低,岩浆房底部的堆晶会发生再熔融,几乎消耗掉所有的斜方辉石,橄榄石也呈熔蚀状浑圆形态,重新熔融的斜方辉石导致超镁铁岩中残留岩浆比原始捕获岩浆更加富Sc,这种岩浆由于富MgO和在快速冷却的环境下同时结晶,最终形成光性方位一致的单刹辉石。喷发后岩浆房空间的剩余导致围岩-灰岩进入,造成岩浆房中剩余岩浆强烈的碳酸盐化。峨眉山玄武岩Cr-Mg#的相关关系定义一条正常玄武岩演化线。大多数这些玄武岩的Ni也保持了这种演化关系,其中低钦玄武岩和过渡型高钦玄武岩Ni-Mg#相关关系远离了正常演化线,这些玄武岩的Cu-Mg#相关关系也有类似的情形。峨眉山低钦和过渡类型高钦玄武岩Ni和 Cu的非正常亏损,表明它们在地表下经历了硫饱和事件。金宝山岩浆硫化物矿床成岩模型的建立,为在整个大火成岩省寻找岩浆硫化物矿床提供了一种新认识。低钦和过渡型高钦玄武岩的古老火山口下部是岩浆硫化物矿床的所在地。